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Abstract

The identification of different grapevine varieties, currently attended using visual ampelome-
try, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions,
is an issue of great importance in the wine industry. This work presents support vector
machine and artificial neural network’s modelling for grapevine varietal classification from
in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global
scale. Spectral measurements were obtained on the near-infrared (NIR) spectral range
between 1600 to 2400 nm under field conditions in a non-destructive way using a portable
spectrophotometer. For the site specific approach, spectra were collected from the adaxial
side of 400 individual leaves of 20 grapevine (Vitis vinifera L.) varieties one week after verai-
son. For the global model, two additional sets of spectra were collected one week before
harvest from two different vineyards in another vintage, each one consisting on 48 measure-
ment from individual leaves of six varieties. Several combinations of spectra scatter correc-
tion and smoothing filtering were studied. For the training of the models, support vector
machines and artificial neural networks were employed using the pre-processed spectra as
input and the varieties as the classes of the models. The results from the pre-processing
study showed that there was no influence whether using scatter correction or not. Also, a
second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the high-
est outcomes. For the site-specific model, with 20 classes, the best results from the classifi-
ers thrown an overall score of 87.25% of correctly classified samples. These results were
compared under the same conditions with a model trained using partial least squares dis-
criminant analysis, which showed a worse performance in every case. For the global model,
a 6-class dataset involving samples from three different vineyards, two years and leaves
monitored at post-veraison and harvest was also built up, reaching a 77.08% of correctly
classified samples. The outcomes obtained demonstrate the capability of using a reliable
method for fast, in-field, non-destructive grapevine varietal classification that could be very
useful in viticulture and wine industry, either global or site-specific.
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Introduction

The development of a fast and automatic procedure for grapevine varietal classification would
bring a new valuable way in viticulture and wine industry due to the high economical and
social impact of these businesses, offering new trends on vineyard monitoring and grape qual-
ity control.

Althought classic ampelometry [1] has been widely used for grapevine varietal identification
by taking morphological differences between varieties into consideration, the necessity of
human expert intervention makes virtually impossible its widespread utilization. Also, wet
chemistry techniques based on isoenzymes [2] or DNA analysis [3-5] have been carried out.
Still, these methods are labour and time-consuming, and not able to be performed under field
conditions.

Near-infrared reflectance spectroscopy (NIRs) is a non-invasive technique, highly-suited
analytical method for several agricultural applications due to its rapid data acquisition time,
the capability of determining more than one parameter using the same measurement, and its
easy fast usage and little sample preparation.

Spectroscopy has been previously applied for fruit composition assessment [6, 7]. Also,
plant varietal discrimination has been accomplished using spectroscopy in crops such as wheat
[8], bayberry [9], pear [10], tomato [11] and strawberry [12], using different organs. Recent
studies have explored the use of leaf spectroscopy for grapevine varietal and clone identification
using hyperspectral imaging under laboratory conditions throughout destructive methods [13,
14]. Also, these works used partial least squares discriminant analysis (PLS-DA) for the train-
ing of the models.

Machine learning techniques for the development of classification models are extensively
applied in countless fields. Methods such as support vector machines (SVM) or artificial neural
networks (ANN) have demonstrated their high reliability in the training of non-linear regres-
sion and classification models.

SVMs have arisen as very solid machine learning methods for supervised classification
issues [15]. SVMs are kernel-based algorithms that transform data into a high-dimensional
space and construct an hyperplane that maximizes the distance to the nearest data point of any
of the input classes. Although SVM are originally designed to train binary classifiers, an exten-
sion for multiple classes is possible by reducing the multiclass problem into several binary clas-
sification ones, using one-versus-all or one-versus-one approaches. SVM models have been
used for NIR varietal classification under laboratory conditions on sesame oil [16], waxy corn
seed [17] or rice seed varieties [18].

ANN are machine learning models inspired on biological neural networks present in animal
brains. The first approaches of the ANN concept was exposed by [19], and afterwards resur-
faced with the introduction of the error backpropagation concept [20, 21]. ANN are formed by
units named processing elements (PE) having similar behaviors than a biological neuron. Differ-
ent functions—as data input, output, storage or forwarding—are distributed among all the PEs.
The layout of a ANN is composed of a number of layers (one-layer or multi-layer designs) and
a number of PE per layer. NIR varietal classification have been carried out using ANN models
in tea plants [22] or herbal medicine [23].

Most studies have developed PLS-DA based models under laboratory conditions from NIR
spectroscopy obtained through destructive methods. Also, these models were constructed
using only a few number of varieties as classes. The importance of fast, in-field grapevine vari-
ety discrimination using a portable device could be crucial for viticulture and wine industry.
Specially in viticulture—for nurseries, appellation boards or commercial vineyards—grapevine
varietal classification is a matter of great interest, e.g., discrimination of unknown vines in
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older vineyards, where it is usual the plantation of more than a single cultivar, or the recogni-
tion of not-allowed varieties in particular appellation regions.

The objective of this work was the classification of grapevine varieties using SVM and ANN
models from in-field, portable and non-desctructive leaf NIR spectroscopy. Particularly, two
approaches have been followed: the developing of a site-specific classification model for 20
grapevine varieties, comparing its performance vs a PLS-DA one; and the use of a dataset with
samples from different vineyards, vintages and phenological stages for developing a global
model that would cover samples from several sources.

Materials and Methods
Layout and experimental design

Site-specific model. The study was carried out on 12 August 2012 (one week after verai-
son) at a 1.43 ha commercial vineyard located in Vergalijo (Lat. 42° 27’ 45.96”, Long. 1° 48’
13.42”, Alt. 325 m), Navarra, Spain, under permission of the owner of the vineyard plot. 20
grapevine (Vitis vinifera L.) varieties (Albarifio, Cabernet Franc, Cabernet Sauvignon, Caladoc,
Carmenere, Godello, Grenache, Malvasia, Marselan, Pedro Ximénez, Pinot Noir, Syrah, Tem-
pranillo, Touriga Nacional, Treixadura, Verdejo, Viognier, Viura, White Grenache, White Tem-
pranillo) were used in this study. Grapevines were trained to a vertically shoot-positioned trellis
system, with North-South row orientation at 2 x 1 meters inter and intra row distances. Varie-
ties were grafted on Richter 110 rootstock. Full irrigation was uniformly applied across the sea-
son for all varieties and these were well watered. The Relative Water Content (RWC) of leaves,
measured following the method in [24], was maintained between 80% and 90% for all varieties.

Global model. Two additional sets of spectral measurements were acquired one week
before harvest from two different vineyards, under permission of the manager and owner,
located at the Rioja Regional Goverment’s Experimental Vineyard (Logrofio, Spain, Lat. 42°
26'4.7”, Long. 2°30°49.0”, Alt. 480 m) on 23 September 2015 and Provedo Nurseries (Viana,
Spain, Lat. 42° 27’ 52.0”, Long. 2° 23’ 36.0”, Alt. 371 m) on 1** October 2015 in order to test
the behaviour and applicability of the model using samples from separated sites, vintages
(samples for site-specific dataset were taken in 2012) and different stages of leaf development
(August—after veraison—vs late September and October—harvest). For this model, six dif-
ferent varieties, grown in the three vineyard sites, were selected— Albarifo, Grenache, Syrah,
Tempranillo, Treixadura and Viura. At Rioja Government’s Vineyard, grapevines were
trained to a vertically shoot-positioned trellis system, with Northwest-Southeast row orienta-
tion at 3 x 1.2 meters inter and intra row distances. Varieties were grafted on Richter 110
rootstock. At Provedo Nurseries, grapevines were trained to a vertically shoot-positioned
trellis system, with East-West row orientation at 3 x 1 meters inter and intra row distances.
Varieties were grafted on Richter 110 rootstock. Full irrigation was uniformly applied across
the season for all vineyard plots and grapevines were well watered.

Spectral measurement in the field

For the spectral acquisition, an integrated portable Near-infrared (NIR) spectral analyzer
(microPHAZIR™, Thermo Fisher Scientific Inc., Waltham, MA, USA), working in reflectance
mode (logl/R) in the range of 1600-2400 nm with an interval of 8.7 nm was used. Sensor inte-
gration time was 600 ms.

Spectral measurements were performed directly upon the adaxial surfaces of the leaves. For
each leaf, five spectra were taken from different spots of the leaf blade. The mean of this five mea-
surements was then considered as the average spectrum of the leaf. In every acquisition, the opti-
cal window of the NIR device was placed in direct contact with the surface of the leaf, making
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sure that the sensor window was completely covered. To avoid the contamination of the adaxial
surfaces with external pollutants, vinyl gloves were used at all times when handling the leaves.

For each one of the 20 varieties for the site-specific model, 10 vines and two adult leaves per
vine of the mid-upper part of the shoot (nodes 6 to 12), a total of 20 leaves per variety, were
selected and labeled with its variety name in order to be measured with a portable spectrometer
device. Spectra were acquired under field conditions directly on the vine in a non-destructive
way. A total of 400 leaves were measured.

For each one of the six varieties for the global model, four vines and two adult leaves per
vine of the mid-upper part of the shoot (nodes 6 to 12), a total of eight leaves per variety,
were selected and labeled with its variety name in each of the three vineyard plots sample.
Spectra were acquired under field conditions directly on the vine in a non-destructive way. A
total of 144 leaves (three places, six varieties per place, four vines per variety, two leaves per
vine) were measured.

Spectral pre-processing and algorithms for modelling

The following pre-processing techniques and algorithms were used:

Scatter correction. Standard normal variate (SNV) followed by de-trending [25] [26] has
been commonly used to remove the multiplicative interferences of scatter in the spectral signal.
In SNV, average and standard deviation of all the data points are calculated individually for
each spectrum. Then, the average value is substracted from the absorbance (zero-mean or cen-
tering) and the result is divided by the calculated standard deviation. De-trending subtracts
from the data points a second degree least-squares fit polynomial calculated from the original
data. Sometimes, no scatter correction is performed upon the raw spectra, hence two options for
scatter correction were tested in this work: the application of SNV + De-trending (SNV+D) on
the spectra before any other filtering, and the total omission of scatter correction (NoSNV+D).

Fig 1 plots, from the 400 samples, the average raw spectrum and the result of SNV + De-
trending scatter correction.

Smoothing filtering. A lowpass smoothing filter that makes use of local least-squares
polynomial approximation was developed in [27]. This method is able to preserve the shape,

1600 1800 2000 2200
Wavelength (nm)

Fig 1. Average raw and pre-processed spectra with SNV+de-trending from the whole set of samples.
Solid line: SNV+de-trending. Dashed line: Raw.

doi:10.1371/journal.pone.0143197.g001
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height and width of waveform peaks. Savitzky-Golay filtering is usually followed by a first- or
second-degree derivative. The smoothing is performed by using a moving window along the
whole spectral signal. Typical values for this are in the range from 5 to 11, both included. In
this work, the combination of two different derivative degrees (first-degree and second-degree)
and two window sizes (5 and 11) were tested. So, four final parameter sets were defined for
Savitzky-Golay filtering: first-degree derivative, window size 5 (D1W5); first-degree derivative,
window size 11 (D1W11); second-degree derivative, window size 5 (D2W5); second-degree
derivative, window size 11 (D2W11).

Classification algorithms. Two different machine learning classification algorithms (sup-
port vector machines and artificial neural networks) have been tested and compared with par-
tial least squares discriminant analysis, widely used in spectroscopy. Sequential minimal
optimization algorithm [28] working with a polynomial kernel was used in this study to train a
SVM for varietal classification. Also, a multilayer perceptron was utilized as ANN classification
method [29]. Partial least squares discriminant analysis (PLS-DA) has been extensively applied
for classification problems, such as strawberry varieties [12], cooked ham quality [30], detec-
tion of expired vacuum-packed smoked salmon [31], Alpaca wool samples [32] or olive varietal
identification [33]. PLS-DA expects to find a proper correlation of spectral variations and a set
of defined classes. This is done by maximizing the covariance value between different class var-
iables and rejecting variance within a class. In this study, PLS-DA models were trained with a
maximum number of six latent variables and a uncertainty factor of 2.326.

For every one of the algorithms, the inputs were provided as the data points of the spectra
(absorbance values of wavelengths 1600 nm to 2400 nm, with a step of 8.7 nm) and the classes
were the identity labels of each variety.

One-way ANOVA was performed when comparing means for testing the influence of: (i)
the application of a scatter correction method; (ii) the four Savitzky-Golay parameter values;
(iii) the three classification algorithms and the interaction of the two previous factors. Tukey’s
range test was used as mean comparison method at a significance level p = 0.05.

Spectra pre-processing was done using the language and software environment R, version
3.1.3, and the additional packages prospectr [34] and pracma [35]. Java Language Program-
ming, version 1.7, along with Weka, version 3.6, [36] were used for machine learning algo-
rithms executions. PLS-DA models were developed using WinISI software package, version 1.5
(Infrasoft International, Port Matilda, PA, USA). Finally, statistical test were performed with
InfoStat software (Cérdoba, Argentina), version 2015.

Model training

A site-specific model for the classification of 20 varieties from the same vineyard plot was
developed. In order to test the influence of the dataset population size in classifiers’ behavior,
two datasets were used for training and evaluating the machine learning models: 20 varieties
(N =20 varieties and n = 400 leaves) and a randomly selected subset of five varieties (N =5
varieties and n = 100 leaves). An execution was performed for each one of the combination of
datasets, with (SNV+D) and without (NoSNV+D) scatter correction, Savitzky-Golay filtering
pretreatments (D1W5, D1W11, D2W5 and D2W11), algorithms (SVM and ANN) and their
parameter sets (12 sets per algorithm), making a total of 384 executions. Due to the high num-
ber of samples (leaves), a k-fold with k = 5 was selected as Cross Validation method instead of
the classic number of k = 10.

A global dataset with six varieties—24 leaves per variety—was built up using samples from
the three vineyard plots all the measurements of this work were taken (Vergalijo 2012, Logrofio
and Viana 2015). The total number of samples was 144 (three places, six varieties per place,
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eight leaves per variety). The same pre-processing algorithm and parameter set combinations
were used as those employed for the site-specific model training, using again a 5-fold Cross
Validation.

As previously mentioned, 12 parameter sets per machine learning algorithm have been used
in order to test their influence in the classification results. These parameters are:

For SVM:

C: The trade-off between complexity of decision rule and frequency of error [15].
Exponent: The polynomial kernel exponent.

For ANN:

Hidden layer layout: The number of PEs present in the hidden layer of the network. 0: no PEs
(so, no hidden layer. Input PEs are directly connected to output PEs. No hidden layer layout
can cast good results if the data is linearly separable). a: the number of PEs is the half of the
sum of the number of attributes (inputs) and classes (outputs). i: the number of PEs is equal
to the number of attributes. o: the number of PEs is equal to the number of classes.

Learning rate: It affects the speed that the minimum solution is reached by the ANN. Its value
should be in the range [0, 1].

Momentum: It regulates the ANN capability of reaching a local minimum. The lower momen-
tum value is set, the less likely the ANN converges to a local minimum (but more computa-
tional time will require). Its value must be in the range [0, 1].

The values used in this study for the above parameters are shown in Table 1.

A source code written in Java was developed for the automatic running of these combina-
tions, taking a computation time of 5 hours and 45 minutes with the following hardware speci-
fications: Intel Core i3, 2.93 GHz processor; 12.0 GB of RAM.

Table 1. Parameter sets for SVM and ANN algorithms.

SVM ANN
C Exponent Hidden Layer 1 Learning Rate Momentum
Parameter set 1 3.5 1 0 0.3 0.1
Parameter set 2 0.1 1 0 0.3 0.9
Parameter set 3 1 1 0 0.7 0.1
Parameter set 4 10 1 a 0.3 0.1
Parameter set 5 3.5 2 a 0.3 0.9
Parameter set 6 0.1 2 a 0.7 0.1
Parameter set 7 1 2 i 0.3 0.1
Parameter set 8 10 2 i 0.3 0.9
Parameter set 9 3.5 3 i 0.7 0.1
Parameter set 10 0.1 3 o 0.3 0.1
Parameter set 11 1 3 o 0.3 0.9
Parameter set 12 10 3 o 0.7 0.1

*0: no processing elements (PEs) in hidden layer; a: PEs = (#attributes + #classes)/2; i1 PEs = #attributes; o: PEs = #classes.
SVM: Support Vector Machine; ANN: Atrtificial Neural Network.

doi:10.1371/journal.pone.0143197.t001
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Table 2. Comparison of means of percentage of correctly classified leaves for signal scatter correction attending to the algorithm used for N =20

and N =5 datasets.
Number of varieties

N =20

Scatter correction PLS-DA SVM ANN
SNV+D 44.8 75.8 78.4
NoSNV+D 47.2 751 77.9
significance n.s. n.s. n.s.
SNV+D 76.5 879a 87.1
NoSNV+D 75.8 85.1b 86.7
significance n.s. * % n.s.

n.s.: not significant (p > 0.05); * *: p < 0.01; (Tukey’s range test at a significance level p = 0.05). SNV+D: Standard Normal Variate followed by De-
trending; PLS-DA: Partial Least Squares Discriminant Analysis; SVM: Support Vector Machine; ANN: Artificial Neural Network.

doi:10.1371/journal.pone.0143197.t002

Results

The influence of scatter correction, algorithms, and smoothing filtering was statistically tested
with the dataset acquired for the site-specific mode.

Influence of scatter correction

Table 2 shows the mean comparison of the percentage of correctly classified grapevine leaves
according to their variety for each algorithm when the scatter correction pre-processing was
applied or omitted. For almost every case, the use of scatter correction had no statistical influ-
ence in the correctly classified percentage obtained, regardless of the algorithm. Only in the
reduced dataset (N = 5), the application of SNV + De-trending performed significantly better

when the SVM was used as classifier.

Influence of algorithms and Savitzky-Golay filters

Table 3 shows the comparison of means of correctly classified percentages attending to the
algorithms and Savitzky-Golay pre-processing. Although there was a common and logical

Table 3. Correctly classified percentages of grapevine leaves for each Savitzky-Golay filter and algorithm combination for N =20 and N = 5 number

of varieties.
Number of varieties Savitzky-Golay filter PLS-DA SVM ANN significance
N=20 D1W5 45.3B 775Aa 81.2Ab * ok ok
D1W11 44.4B 69.7Ab 67.3Ac * %
D2w5 51.0B 78.0Aa 843Aa * %k
D2w11 432B 76.7 Aa 79.8Ab * KX
significance n.s. * % * k¥
N=5 D1W5 81.5a 87.8b 88.0b n.s
D1W11 725Bb 79.3Ac 81.0Ac
D2w5 845Ba 91.2Aa 916Aa * x %
D2w11 66.0Bc 87.8Ab 86.9AD * x %
significance * * **x ** %

The values shown are the varieties correctly classified percentage. Each value is, in turn, the average of the results obtained using and not using scatter

correction and, for SVM and ANN, the 12 parameter sets.

PLS-DA: Partial Least Squares Discriminant Analysis; SVM: Support Vector Machine; ANN: Artificial Neural Network.

Uppercase and italic lowercase letters attend respectively to row-wise (comparison among algorithms) and column-wise (comparison among Savitzky-

Golay filters) values comparison. n.s.: not significant (p > 0.05); *: p < 0.05; * *: p < 0.01; * * *: p < 0.001.

doi:10.1371/journal.pone.0143197.t003
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widespread worse response from the algorithms when the number of varieties to be classified is
noticeably large, the SVM and ANN classifiers still achieved very good results for N = 20.
When—for these two algorithms—the correctly classified percentages reached excellent num-
bers with N = 5 (values moving between 79.3% and 91.6%), this remarkable behaviour
remained with a slight degradation when the number of classes was four times greater (cor-
rectly classified percentage values between 67.3% and 84.3%).

As it can be seen, both ANN and SVM algorithms performed widely better than PLS-DA.
Though this classifier obtained notable results in the reduced dataset, the increase of the num-
ber of varieties heavily degraded the output of the algorithm, barely reaching the 50% correctly
classified mark (Table 3).

The results in Table 3 show that the best behaviour was generally yielded by ANN, achieving
up to an average of 84.3% correctly classified instances for N = 20 and 91.6% for N = 5. Statisti-
cal tests displayed that in every case, the use of ANN or SVM casts significantly better outputs
than PLS-DA, demonstrating the high suitability and surpassing response from the two
machine learning classifiers vs PLS-DA. The interaction of the algorithm and the Savitzky-
Golay configuration was calculated for both N = 20 and N = 5 through statistical tests. For the
first dataset, the test showed that the interaction of both factor was significant at p < 0.05. For
N =5 dataset the interaction was significant at p < 0.01. If the ANOVA was performed only
for SVM and ANN (ignoring the PLS-DA results), a p-value of 0.024 for N = 20 and 0.649 for
N = 5 (not shown in the table) was obtained. Thus, while in the first case the use of ANN was
significantly better (*) with regard to SVM, for N = 5 there was no significantly difference (n.s.)
in using any algorithm.

Regarding the four different Savitzky-Golay configurations, statistical tests showed that the
parameter values selection for this pre-processing filter was significantly influential in the final
output, except for PLS-DA algorithm having N = 20. Also, Table 3 displays that, in every one
of the cases, the Savitzky-Golay configuration with higher correctly classified percentage was a
second-degree derivative with a window size of 5 (D2W5). It is likewise consistent that the sec-
ond best configuration fell upon a first-derivative and window size 5 Saviztky-Golay filtering
(D1WS5). Using a window size of 11 returned the worst outcomes for every algorithm, so it was
an avoidable choice for this study (Table 3).

Site-specific grapevine variety classification

From the 192 executions for N = 20, the best result (the one with the highest correctly classified
percentage) was obtained with the following configuration: ANN, SNV+D, D2W5, parameter
set 10 (Fig 2 shows, for the 400 leaf samples, the average raw and processed spectra using the
pre-processing from this combination). The overall correctly classified percentage was 87.25
(349 out of 400 samples properly classified) and the confusion matrix of this configuration is
shown in Table 4.

Three varieties (Cabernet Franc, Cabernet Sauvignon and Touriga Nacional) achieved a
perfect score, while six ones reached excellent results (percentage of correct classification
greater than 90%): Albarifio, Treixadura, Viognier, Grenache, Carmenere and Caladoc. Seven
varieties obtained good results in their classification (greater or equal than 75% and less or
equal than 90%): Viura, Godello, White Grenache, White Tempranillo, Pedro Ximénez, Syrah,
Tempranillo and Pinot Noir. Finally, the three varieties with worst result (less than 75%) were
Verdejo, Malvasia and Marselan. The classification of the Verdejo leaves resulted in a moderate
output, with a 50% of correctly classified samples. From these 10 misclassified instances, three
were predicted as Viura and two as Tempranillo. For Malvasia, the majority of the misclassified
samples were also assigned to the Viura class.
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Fig 2. Average raw (A) and processed spectra (B) with SNV+de-trending+Savitzky-Golay filter
(second-degree derivative, window size 5) from all samples.

doi:10.1371/journal.pone.0143197.g002

Global variety classification

From the 6-class global dataset model involving samples from different vineyards, vintages and
phenological stages, the outcome with the highest correctly classified percentage was achieved
with the following combination: ANN, NoSNV+D, D2W5, parameter set 6; reaching an overall
result of 77.08% of correctly classified samples (111 out of 144). Table 5 shows the confusion
matrix of this model.

Individually, the best classification results were obtained for Tempranillo and Grenache
varieties, with a 91.7% and 87.5% correctly classified score respectively. Nonetheless, two varie-
ties—Viura and Syrah—obtained a more modest score of correctly classified percentage, below
the 70% mark in both cases.
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Table 4. Confusion matrix from the execution with the best score (ANN, SNV+D, D2W5 and parameter set 10) with an overall correctly classified
value of 87.25% (20 leaves per variety).

Classified as

Ve M v A T G WG WT PX Vi CF Gr CS C S Te PN Ca Ma TN %
Ve 10 1 3 0 0 1 1 1 0 0 1 0 0 0 0 2 0 0 0 0 50
M 0 14 5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 70
v 1 3 15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 75
A 0 0 0 19 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 95
T 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 95
G 0 0 0 0 0 18 1 0 0 0 0 0 0 0 0 0 1 0 0 0 90
WG 0 0 0 0 0 0 16 0 0 1 0 2 0 0 0 0 0 0 0 1 80
wT 0 0 0 0 0 1 0 17 0 0 0 0 0 1 0 0 0 0 0 1 85
PX 0 0 1 0 0 0 0 0 18 1 0 0 0 0 0 0 0 0 0 0 90
Vi 0 0 0 0 0 0 0 0 0 19 0 0 0 0 1 0 0 0 0 0 95
CF 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 100
Gr 0 0 0 0 0 0 0 0 0 0 1 19 0 0 0 0 0 0 0 0 95
Cs 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 100
C 0 0 0 1 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 95
S 0 0 0 0 0 0 0 0 0 0 1 0 1 0 18 0 0 0 0 0 90
Te 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 17 1 0 0 0 85
PN 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 1 0 90
Ca 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 19 0 0 95
Ma 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 2 0 14 0 70
TN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 100

Each row represents the actual variety and in which one was classified. Bolded values (diagonal of the matrix) are the number of samples properly
classified. The last column shows the correctly classified percentage for each variety.

ANN: Artificial Neural Network; SNV+D: Standard Normal Variate followed by De-trending; D2W5: Second-degree derivative and window size 5 Savitzky-
Golay filter.

Ve: Verdejo; M: Malvasia; V: Viura; A: Albarifio; T: Treixadura; G: Godello; WG: White Grenache; WT: White Tempranillo; PX: Pedro Ximénez; Vi:
Viognier; CF: Cabernet Franc; Gr: Grenache; CS: Cabernet Sauvignon; C: Carmenere; S: Syrah; Te: Tempranillo; PN: Pinot Noir; Ca: Caladoc; Ma:
Marselan; TN: Touriga Nacional.

doi:10.1371/journal.pone.0143197.1004

Discussion

The present work has shown the possibility of grapevine varietal classification using a portable
NIR spectrophotometer in the field along with SVM and ANN models. 20 different grapevine
varieties were classified with an overall correct classification percentage of 87.25% in a site-spe-
cific approach. Similar recent studies such as [13] or [14] also reached high percentages in vari-
etal (93.53%) and clone (98.8%) discrimination. Nevertheless, in [13], hyperspectral imaging
was conducted with a camera operating between 380 nm and 1028 nm under laboratory condi-
tions on leaf discs. The PLS-DA models obtained in [13] were trained for the discrimination of
three grapevine varieties and resulted, for every one of then, in correctly classification percent-
ages over 92%. Although a lower overall percentage was obtained in the present work
(87.25%), it is important to highlight the fact that this result was achieved from training a
model with 20 classes under field conditions. Only less than five points were lost when using a
classifier that had more than six times the number of classes in [13]. Additionally, attention
must be drawn to the fact that the present study achieved the grapevine classification goal
using NIR measurements acquired under field conditions with a portable device, while in [13]
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Table 5. Confusion matrix from the global dataset execution with the best score (ANN, NoSNV+D,
D2WS5 and parameter set 6) with an overall correctly classified value of 77.08% (24 leaves per variety).

Classified as
\'} Gr T Te S A %
Vv 15 1 3 0 1 4 62.5
Gr 0 21 0 2 1 0 87.5
T 0 0 22 1 0 1 91.7
Te 1 3 17 2 0 70.8
S 1 0 0 6 16 1 66.7
A 0 0 0 3 20 83.3

Each row represents the actual variety and in which one was classified. Bolded values (diagonal of the
matrix) are the number of samples properly classified. The last column shows the correctly classified
percentage for each variety.

ANN: Artificial Neural Network; NoSNV+D: No application of Standard Normal Variate followed by De-
trending; D2W5: Second-degree derivative and window size 5 Savitzky-Golay filter.

V: Viura; Gr: Grenache; T: Treixadura; Te: Tempranillo; S: Syrah; A: Albarifio.

doi:10.1371/journal.pone.0143197.t005

hyperspectral imaging was performed using a camera under laboratory conditions and having
full control of illumination status.

The discrimination and classification of grapevine varieties using in-field NIR spectroscopy
can be feasible as ated in this work. The variation in spectral properties in relation to leaf bio-
chemical composition and structure, which depends on many factors like the plant species, the
developmental or microclimate position of the leaf on the plant [37], have been outlined as
potent factors causing this spectra differentiation. Still, the leaf water content can be an influ-
ence due to the fact that the absorption band of water can be found at 1940 nm. However, in
this work the differences in water content have not driven the discrimination of leaves accord-
ing to their variety, as special care was paid to measure only leaves with RWC marks between
80% and 90%.

In regard to spectra pretreatments (scatter correction and smoothing filtering), [38]
remarked that selection of suitable spectral pre-treatment is not easy, due to the strong likeli-
hood of several different mathematical transformation being used. The selection of the best
pre-treatment for spectra analysis must be based on the combination of statistical testing and
the modeller’s judgement [39]. Several factors can affect the results of applying different spec-
tral pre-processing methods, ranging from sample nature to light conditions or spectra acquisi-
tion device’s status, etc, so the fact that SNV followed by de-trending and a second-degree
derivative, window size 5 Savitzky-Golay filter cast the best classification marks would not
assure this behaviour will maintain in other plant varietal discrimination problems.

In every case, SVM and ANN outperformed PLS-DA, whether five or 20 classes were used
in the training. PLS-DA extracts the principal components from the whole set of wavelengths,
by linear combinations of them, and ranking them depending on the more explained variance.
The fact that SVMs and ANNs develop non-linear models and the complete set of wavelength
values are used may be the cause of this better performance (e.g., the training process of an arti-
ficial neural network already penalizes those input variables less useful in the discrimination
goal); this was more clear when comparing the N = 20 models. Although ANN performed bet-
ter than SVM in almost every case, the lack of statistical significance between their scores
allows to affirm that both of them could be used for this type of varietal discrimination
purposes.
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The outcomes the global method have thrown support the applicability of ANN for a multi-
vineyard, vintage and phenological stage grapevine varietal discrimination. Despite the lower
score obtained from the global vineyard dataset, 77.08%, versus the one achieved by the site-
specific dataset, 87.25%, these results accomplished the classification goal with a high level of
satisfaction, specially when taking into account that the model contemplated samples from dif-
ferent vineyards, seasons and leaf age, according to different phenological stages. Divergences
were found regarding the pre-processing and parameter set combination with the best scores
for site-specific and global datasets. While the algorithm (ANN) and smoothing filtering
(D2W5) remained the same for both, not applying SNV and de-trending worked better in the
global dataset, unlike the original one, where this scatter correction method gave a better
response. This behavior could be a consequence of the differences in phenological stages and
vineyards’ places at which the spectral measurements were acquired, given that leaf’s maturity
is influenced by the time of year, and phenotype is affected by the physiology and field environ-
ment of the grapevine [40-42]. A scatter correction step might hide the spectral representation
of these phenomena. Still, as previously discussed, the use of SNV and de-trending showed no
statistical influence in the results, so the divergence related to the employment of this scatter
correction procedure brought no big issue. The same applies for the ANN parameter set, where
the original dataset responded better with a different one (parameter set 10) than the global
dataset (parameter set 6). The minor particularities of the Multilayer Perceptron ANN imple-
mentation (such as the concrete values of the configuration parameters) are always very influ-
enced by the input data and experimenter criteria, and could not be generalized.

The high marks obtained in the present work by both studied datasets, attending specially
to the large number of classes for the site-specific model and the significant heterogeneity for
the global one, opens several ways of direct application for viticulture and wine industry,
including precision viticulture, if spectral data are georeferenced. In addition to the novelty of
the spectral range and the high number of classes discriminated, it is worth highlighting that
the spectra used in this study were acquired in the field, where illumination conditions are far
from being stable. ANNs have demonstrated a notable accuracy for both potential applications
of: a vineyard-specialized varietal classification, e.g., given vineyard plots sharing environmen-
tal, climatic and seasonal features (as evidenced by the 20-class model); and the global and gen-
eralized classification of vineyards from heterogeneous sources (different sites, vintages and
phenological stages), such as those found in a whole region or territory. But this reliability is
not the only valuable feature of this method: the easy usage because of its fast, portable and
non-destructive nature makes the present grapevine varietal discrimination approach prone
for direct in-field applicability by commercial vineyards, nurseries, appellation boards, among
others. The remarkable performance of the developed model under field conditions paves the
way for the use of this type of portable NIR analyses as powerful phenotyping tools in viticul-
ture and other crops.

Conclusions

The present study proposes a new classification method for the classification of grapevine vari-
eties from in-field leaf NIR spectroscopy acquired through non-destructive methods. Model-
ling was approached in two ways: training the classifier with leaves from 20 varieties—building
a site-specific model—and leaves from different vineyards, vintages and stages of development
—building a global model. Support Vector Machines and Artificial Neural Networks showed a
high reliability in the creation of grapevine leaf varietal classification models from in-field NIR
spectroscopy using non-destructive data acquisition. The accuracy showed by both site-specific
models, specially when the number of classes was high, along with the ability of properly train
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the model from heterogeneous sources, allows to consider this NIR range suitable for in-field
grapevine varietal discrimination.

The classification results cast by the trained models open a new window in viticulture and
wine industry, specially due to its portable and non-destructive nature, allowing the fast and
in-field discrimination of a high number of grapevine varieties.
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