Study of the tribological performance of Ti6Al4V textured with pyramidal dimples by electro discharge machining

  1. Salguero, J 1
  2. Piñero, D 1
  3. Del Sol, I 1
  4. Vazquez, J M 1
  1. 1 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

Revue:
IOP Conference Series: Materials Science and Engineering

ISSN: 1757-8981 1757-899X

Année de publication: 2021

Volumen: 1193

Número: 1

Type: Article

DOI: 10.1088/1757-899X/1193/1/012023 GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: IOP Conference Series: Materials Science and Engineering

Résumé

Surface texturing has demonstrated to be a useful technique for improving thetribological performance of surfaces in contact. In particular, in this research it has been appliedto the Ti6Al4V titanium alloy, with poor tribological behaviour, by creating different texturingdensities with pyramidal geometries. Additionally, these geometries have been obtained throughsinking electro-discharge machining processes, scarcely addressed in the scientific literature. Indry sliding conditions, the results obtained show an improvement of about 65% in the coefficientof friction, while in lubricated contact, the improvement in the lubricant retention capacity resultsin the formation of an abrasive paste formed by the lubricant and the wear debris, which worsenstribological behaviour.

Références bibliographiques

  • Ibatan, (2015), Surf. Coat. Technol., 272, pp. 102, 10.1016/j.surfcoat.2015.04.017
  • Mouritz, (2012)
  • Veiga, (2012), Reviews on Advanced Materials Science, 32, pp. 133
  • Salguero, (2019), Wear, 426-427, pp. 1272, 10.1016/j.wear.2018.12.029
  • Kumar, (2020), Journal of Materials Engineering and Performance, 29, pp. 2827, 10.1007/s11665-020-04816-8
  • Wojciechowskia, (2016), Tribology International, 93B, pp. 593, 10.1016/j.triboint.2015.04.013
  • Mang, (2011)
  • Yu, (2018), Tribology Int., 121, pp. 84, 10.1016/j.triboint.2018.01.046
  • Roy, (2014), Ceramics International, 40, pp. 2381, 10.1016/j.ceramint.2013.08.009
  • Jain, (2020), Surfaces and Interfaces, 21, pp. 100714, 10.1016/j.surfin.2020.100714
  • Kumar, (2018), Procedia Manufacturing, 26, pp. 317, 10.1016/j.jmapro.2018.08.013
  • Ghani, (2019), Wear, 426–427, pp. 1280, 10.1016/j.wear.2018.12.040
  • Etsion, (2005), Journal of Tribology, 127, pp. 248, 10.1115/1.1828070
  • Han, (2021), International Journal of Refractory Metals and Hard Materials, 95, pp. 105463, 10.1016/j.ijrmhm.2020.105463
  • Man, (2010), Applied Surface Science, 256, pp. 3166, 10.1016/j.apsusc.2009.11.092
  • Dai, (2015), Materials and Design, 84, pp. 178, 10.1016/j.matdes.2015.06.137
  • Vazquez-Martinez, (2013), Procedia Engineering, 63, pp. 752, 10.1016/j.proeng.2013.08.265
  • Vazquez-Martinez, (2019), Coatings, 9, pp. 658, 10.3390/coatings9100658
  • Yamaguchi, (2016), Procedia CIRP, 42, pp. 662, 10.1016/j.procir.2016.02.298
  • Singh, (2019), Precision Engineering, 59, pp. 211, 10.1016/j.precisioneng.2019.05.008
  • Li, (2018), Applied Surface Science, 458, pp. 810, 10.1016/j.apsusc.2018.07.132
  • Wang, (2016), Procedia CIRP, 42, pp. 656, 10.1016/j.procir.2016.02.297
  • Barmana, (2014), Procedia Materials Science, 6, pp. 304, 10.1016/j.mspro.2014.07.038
  • (2017)