The complexity of studying coastsFrom forms and processes to management

  1. Francisco Javier Gracia Prieto 1
  1. 1 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

Revista:
Cuadernos de investigación geográfica: Geographical Research Letters
  1. Gracia Prieto, Francisco Javier (ed. lit.)

ISSN: 0211-6820 1697-9540

Año de publicación: 2022

Volumen: 48

Número: 2

Páginas: 219-255

Tipo: Artículo

DOI: 10.18172/CIG.5451 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Cuadernos de investigación geográfica: Geographical Research Letters

Resumen

Los ambientes costeros se caracterizan por su gran dinamismo, relacionado con la interacción entre agentes marinos (viento, oleaje, corrientes, variaciones del nivel del mar) y formas y procesos continentales. El presente artículo resume las principales características morfodinámicas de las costas y los ambientes resultantes. Se han considerado las diferentes oscilaciones del nivel del mar, dependiendo de su amplitud y frecuencia: fluctuaciones eustáticas rápidas, tsunamis enérgicos, olas de temporal e inundaciones de marejada, mareas y oleaje de viento de buen tiempo. Los ambientes costeros se han clasificado en costas bajas, sedimentarias, que incluyen playas, dunas, islas-barrera, albuferas, marismas y desembocaduras fluviales, y costas altas, rocosas. La gestión de zonas costeras necesita de un conocimiento profundo de todos los procesos involucrados en el litoral, especialmente a escala local, ya que los procesos costeros varían rápidamente a lo largo de la línea de costa. En la actualidad la gestión integrada de zonas costeras pretende involucrar a diferentes sectores socioeconómicos interesados en la ocupación y uso de la costa. La gestión costera debe incluir la adaptación de las actividades humanas a los procesos naturales y a los riesgos naturales asociados, así como la protección de los valores de la costa, tanto naturales como histórico-culturales. Las administraciones públicas a distintos niveles deberían considerar el conocimiento de los procesos costeros a diferentes escalas y su interacción potencial con las actividades humanas, de cara a diseñar leyes y normativas de acuerdo con ellas.

Referencias bibliográficas

  • Abril, J.M., Periáñez, R., Escacena, J.L., 2013. Modelling tides and tsunami propagation in the former Gulf of Tartessos, as a tool for Archaeological Science. Journal of Archaeological Science 40, 4499-4508.
  • Adlam, K., 2014. Coastal lagoons: Geologic evolution in two phases. Marine Geology 355, 291-296. https://doi.org/10.1016/j.margeo.2014.06.005
  • Aguilera, P., Gracia, F.J., 2004. La degradación de las salinas abandonadas. In A. Pérez Hurtado (Coord.). Salinas de Andalucía. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla, p. 274-277.
  • Alberico, I., Iavarone, R., Angrisani, A.C., Castiello, A., Incarnato, R., Barrera, R., 2017. The potential vulnerability indices as tools for natural risk reduction. The Volturno coastal plain case study. Journal of Coastal Conservation 21, 743-758. https://doi.org/10.1007/s11852-017-0534-4
  • Alcérreca-Huerta, J.C., Montiel-Hernández, J.R., Callejas-Jiménez, M.E., Hernández-Avilés, D.A., Anfuso, G., Silva, R., 2020. Vulnerability of subaerial and submarine landscapes: The Sand Falls in Cabo San Lucas, Mexico. Land 10, 27. https://doi.org/10.3390/land10010027
  • Almeida, L.P., Vousdoukas, M.V., Ferreira, Ó., Rodrigues, B.A., Matias, A., 2012. Thresholds for storm impacts on an exposed sandy coastal area in southern Portugal. Geomorphology 143-144, 3-12. https://doi.org/10.1016/j.geomorph.2011.04.047
  • Álvarez, M., Machuca, F. (eds.), 2022. Historical earthquakes, tsunamis and archaeology in the Iberian Peninsula. Springer Nature, Singapore (in press).
  • Amarouche, K., Akpinar, A., Semedo, A., 2022. Wave storm events in the Western Mediterranean Sea over four decades. Ocean Modelling 170, 101933. https://doi.org/10.1016/j.ocemod.2021.101933
  • Anfuso, G., Rangel-Buitrago, N., Cortéz-Useche, C., Iglesias Castillo, B., Gracia, F.J., 2015. Characterization of storm events along the Gulf of Cadiz (eastern central Atlantic Ocean). International Journal of Climatology 36, 3690-3707. https://doi.org/10.1002/joc.4585
  • Anthony, E.J., Marriner, N., Morhange, C., 2014. Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000 years: From progradation to destruction phase? Earth-Science Reviews 139, 336-361. https://doi.org/10.1016/j.earscirev.2014.10.003
  • Antonioli, F., Ferranti, L., Lambeck, K., Kershaw, S., Verrubbi, V., Dai Pra, G., 2006. Late Pleistocene to Holocene record of changing uplift rates in southern Calabria and northeastern Sicily (southern Italy, Central Mediterranean Sea). Tectonophysics 422, 23-40. https://doi.org/10.1016/j.tecto.2006.05.003
  • Aranda, M., Gracia, F.J., Peralta, G. 2020. Estuarine mapping and eco-geomorphological characterization for potential application in conservation and management: three study cases along the Iberian coast. Applied Sciences 10(13), 4429. https://doi.org/10.3390/appp10134429
  • Asensio-Montesinos, F., Anfuso, G., Corbí, H. 2019. Coastal scenery and litter impact at Alicante (SE Spain): management issues. Journal of Coastal Conservation 23, 185-201. https://doi.org/10.1007/s11852-018-0651-8
  • Aucelli, P.P., Cinque, A., Mattei, G., Pappone, G., Rizzo, A., 2019. Studying relative sea level change and correlative adaptation of coastal structures on submerged Roman time ruins nearby Naples (southern Italy). Quaternary International 501, 328-348. https://doi.org/10.1016/j.quaint.2017.10.011
  • Bagdanaviciute, I., Kelpsaite-Rimkiene, L., Galiniene, J., Soomere, T., 2019. Index based multi-criteria approach to coastal risk assessment. Journal of Coastal Conservation 23, 785-800. https://doi.org/10.1007/s11852-018-0638-5
  • Barbano, M.S., Pirrotta, C., Gerardi, F., 2010. Large boulders along the south-eastern Ionian coast of Sicily: Storm or tsunami deposits? Marine Geology 275, 140-154, https://doi.org/10.1016/j.margeo.2010.05.005
  • Barragán, J.M., 2005. La gestión de áreas litorales en España y Latinoamérica. Servicio de Publicaciones de la Universidad de Cádiz, 198 p.
  • Barrantes-Castillo, G., Arozarena-Llopis, I., Sandoval-Murillo, L.F., Valverde-Calderón, J.F., 2020. Critical beaches due to coastal erosion in the Caribbean south of Costa Rica, during the period 2005-2016. Revista Geográfica de América Central 64(1), 123-150.
  • Bartolomé, C., Álvarez, J., Vaquero, J., Costa, M., Casermeiro, M.A., Giraldo, J., Zamora, J., Hidalgo, R., 2005. Los tipos de hábitat de interés comunitario de España. Ministerio de Medio Ambiente, Dirección General para la Biodiversidad, 283 p., Madrid.
  • Beckman, J.N., Long, J.W., Hawkes, A.D., Leonard, L.A., Ghoneim, E., 2021. Investigating controls on barrier island overwash and evolution during extreme storms. Water 13, 2829. https://doi.org/10.3390/w13202829
  • Benavente, J., Del Río, L., Plomaritis, T.A., Menapace, W., 2013. Impact of coastal storms in a sandy barrier (Sancti Petri, Spain). In: D.C. Conley, G. Masselink, P.E. Russell, T.J. O’Hare (eds.). Proc. 12th Intern. Coastal Symp., Plymouth, England, Journal of Coastal Research, Spec. Is. 65, 666-671.
  • Bennett, W.G., Karunarathna, H., Reeve, D.E., Mori, N., 2019. Computational modelling of morphodynamic response of a macro-tidal beach to future climate variabilities. Marine Geology 415, 105960. https://doi.org/10.1016/j.margeo.2019.105960
  • Best, Ü.S.N., Van der Wegen, M., Dijkstra, J., Willemsen, P.W.J.M., Borsje, B.W., Roelvink, D.J.A., 2018. Do salt marshes survive sea level rise? Modelling wave action, morphodynamics and vegetation dynamics. Environmental Modelling and Software 109, 152-166. https://doi.org/10.1016/j.envsoft.2018.08.004
  • Bird, E.C.F., 2010. Encyclopedia of the world’s coastal landforms. Springer, Dordrecht, 1493 p. https://doi.org/10.1007/978-1-4020-8640-3
  • Bird, E., 2016. Coastal cliffs: Morphology and management. Springer, 91 p.
  • Blanco-Chao, R., Pérez-Alberti, A., Trenhaile, A.S., Costa-Casais, M., Valcárcel, M., 2007. Shore platform abrasion in a para-periglacial environment, Galicia, northwestern Spain. Geomorphology 83, 136-151. https://doi.org/10.1016/j.geomorph.2006.06.028
  • Boak, E.H., Turner, I.L., 2005. Shoreline definition and detection: A review. Journal of Coastal Research 21 (4), 688-703. https://doi.org/10.2112/03-0071.1
  • Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research 104, 7649-7666. https://doi.org/10.1029/98JC02622
  • Brain, M.J., Kemp, A.C., Horton, B.P., Culver, S.J., Parnell, A.C., Cahill, N., 2015. Quantifying the contribution of sediment compaction to late Holocene salt-marsh sea-level reconstructions, North Carolina, USA. Quaternary Research 83, 41-51. https://doi.org/10.1016/j.yqres.2014.08.003
  • Brampton, A.H., 1998. Cliff conservation and protection: methods and practices to resolve conflicts. In J. Hooke (Ed.), Coastal Defence and Earth Science Conservation. The Geological Society, p. 21-31, London.
  • Brunetta, R., Paiva, J.S., Ciavola, P., 2019. Morphological evolution of an intertidal area following a set-back scheme: A case study from the Perkpolder Basin (Netherlands). Frontiers in Earth Science 7, art. 228. https://doi.org/10.3389/feart.2019.00228
  • Brunier, G., Anthony, E.J., Gratiot, N., Gardel, A., 2019. Exceptional rates and mechanisms of muddy shoreline retreat following mangrove removal. Earth Surface Processes and Landforms 44, 1559-1571. https://doi.org/10.1002/esp.4593
  • Bruun, P. 1962. Sea-level rise as a cause of shore erosion. Proceeding of the American Society of Civil Engineers. Journal of the Waterways and Harbours Division 88, 117-130.
  • Bryant, E., 2008. Tsunami. The underrated hazard. Springer, 330 p., Chichester.
  • Caporizzo, C., Gracia, F.J., Aucelli, P.P.C., Barbero, L., Martín-Puertas, C., Lagóstena, L., Ruiz, J.A., Alonso, C., Mattei, G., Galán-Ruffoni, I., López-Ramírez, J.A., Higueras-Milena, A., 2021. Late-Holocene evolution of the Northern Bay of Cádiz from geomorphological, stratigraphic and archaeological data. Quaternary International 602, 92-109. https://doi.org/10.1016/j.quaint.2021.03.028
  • Carpenter, N.E., Dickson, M.E., Walkden, M.J.A., Nicholls, R.J., Powrie, W., 2014. Effects of varied lithology on soft-cliff recession rates. Marine Geology 354, 40-52. https://doi.org/10.1016/j.margeo.2014.04.009
  • Carrasco, A.R., Ferreira, Ó., Roelvink, D., 2016. Coastal lagoons and rising sea level: A review. Earth-Science Reviews 154, 356-368. https://doi.org/10.1016/j.earscirev.2015.11.007
  • Carter, R.W.G., 1990. Coastal environments. An introduction to the physical, ecological and cultural systems of coastlines. Elsevier, 617 p.
  • Carter, R.W.G., Hesp, P.A., Nordstrom, K.F., 1990. Erosional landforms in coastal dunes. In K.F. Nordstrom, N.P. Psuty, R.W.G. Carter (eds.), Coastal dunes: Form and process. John Wiley & Sons, p. 217-249.
  • Casamayor, M., Alonso, I., Valiente, N.G., Sánchez-García, M.J., 2022. Seasonal response of a composite beach in relation to wave climate. Geomorphology 408, 108245. https://doi.org/10.1016/j.geomorph.2022.108245
  • Chee, C.L., Singh, A., Persad, R., Darsan, J., 2014. The influence of tidal currents on coastal erosion in a tropical micro-tidal environment – the case of Columbus Bay, Trinidad. Global Journal of Science Frontier Research (H) 14, 5.
  • Chen, Y., Li, Y., Thompson, C., Wang, X., Cai, T., Chang, Y., 2018. Differential sediment trapping abilities of mangrove and saltmarsh vegetation in a subtropical estuary. Geomorphology 318, 270-282. https://doi.org/10.1016/j.geomorph.2018.06.018
  • Ciavola, P., Collins, M. (Eds.), 2004. Sediment transport in European estuarine environments. Journal of Coastal Research, S.I. 41, 169 p.
  • Ciavola, P., Jiménez, J.A. 2013. The record of marine storminess along European coastlines. Natural Hazards and Earth System Sciences 13, 1999-2002. https://doi.org/10.5194/nhess-13-1999-2013
  • Cooper, J.A.G., Green, A.N., Loureiro, C., 2018. Geological constraints on mesoscale coastal barrier behaviour. Global and Planetary Change 168, 15-34. https://doi.org/10.1016/j.gloplacha.2018.06.006
  • Cooper, J.A.G., Pilkey, O.H., 2004. Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Global and Planetary Change 43, 157-171. https://doi.org/10.1016/j.gloplacha.2004.07.001.
  • Costa, P.J.M., Dawson, S., Ramalho, R.S., Engel, M., Dourado, F., Bosnic, I., Andrade, C., 2021. A review on onshore tsunami deposits along the Atlantic coasts. Earth-Science Reviews 212, 103441. https://doi.org/10.1016/j.earscirev.2020.103441
  • Costas, S., Sousa, L.B. de, Kombiadou, K., Ferreira, O., Plomaritis, T.A., 2020. Exploring foredune growth capacity in a coarse sandy beach. Geomorphology 371, 107435. https://doi.org/10.1016/j.geomorph.2020.107435
  • Cronin, T.M., 2012. Rapid sea-level rise. Quaternary Science Reviews 56, 11-30. https://doi.org/10.1016/j.quascirev.2012.08.021.
  • Crowell, M., Leatherman, S.P., Douglas, B., 2018. Erosion: Historical analysis and forecasting. In C.W. Finkl, C. Makowski (eds.), Encyclopedia of Coastal Science, Springer. https://doi.org/10.1007/978-3-319-48657-4_138-2
  • Dabrio, C.J., Zazo, C., Goy, J.L., Sierro, F.J., Borja, F., Lario, J., González, J.A., Flores, J.A., 2000. Depositional history of estuarine infill during the last postglacial transgression (Gulf of Cádiz, Southern Spain). Marine Geology 162, 381-404. https://doi.org/10.1016/S0025-3227(99)00069-9
  • Da Silva, A.P., Da Silva, G.V., Strauss, D., Murray, T., Woortmann, L.G., Taber, J., Cartwright, N., Tomlinson, R., 2021. Headland bypassing timescales: Processes and driving forces. Science of the Total Environment 793, 148591. https://doi.org/10.1016/j.scitotenv.2021.148591.
  • Davidson-Arnott, R. 2010. An introduction to coastal processes and geomorphology. Cambridge University Press, 442 p., Cambridge.
  • Dawson, A.G., Shi, S. 2000. Tsunami deposits. Pure and Applied Geophysics 157, 875-897. https://doi.org/10.1007/s000240050010
  • Day, J.W., Kemp, G.P., Reed, D.J., Cahoon, D.R., Boumans, R.M., Suhayda, J.M., Gambrell, R., 2011. Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise. Ecological Engineering 37, 229-240. https://doi.org/10.1016/j.ecoleng.2010.11.021
  • Del Río, L., Gracia, F.J., 2009. Erosion risk assessment of active coastal cliffs in temperate environments. Geomorphology 112, 82-95. https://doi.org/10.1016/j.geomorph.2009.05.009
  • Del Río, L., Gracia, F.J., 2013. Error determination in the photogrammetric assessment of shoreline changes. Natural Hazards 65, 2385-2397. https://doi.org/10.1007/s11069-012-0407-y
  • Del Río, L., Plomaritis, T.A., Benavente, J., Valladares, M., Ribera, P., 2012. Establishing storm thresholds for the Spanish Gulf of Cádiz coast. Geomorphology 143-144, 13-23 https://doi.org/10.1016/j.geomorph.2011.04.048
  • Del Río, L., Posanski, D., Gracia, F.J., Pérez-Romero, A.M., 2020. A comparative approach of monitoring techniques to assess erosion processes on soft cliffs. Bulletin of Engineering Geology and the Environment 79, 1797-1814. https://doi.org/10.1007/s10064-019-01680-2
  • De Pippo, T., Donadio, C., Mazzarella, A., Paolillo, G., Pennetta, M., 2004. Fractal geometry applied to coastal and submarine features. Zeitschrift für Geomorphologie N.F. 48(2), 185-199. https://doi.org/10.1127/zfg/48/2004/185
  • Dey, N., Shukla, P., 2019. Effects of tidal range on the Digha coast: A geomorphological investigation. Indian Journal of Spatial Science 10, 79-86.
  • Dissanayake, P., Brown, J., Wisse, P., Karunarathna, H., 2015. Effects of storm clustering on beach/dune evolution. Marine Geology 370, 63-75, https://doi.org/10.1016/j.margeo.2015.10.010
  • Donadio, C. 2017. Experimenting criteria for risk mitigation in fluvial-coastal environment. Journal of City, Safety, Energy 1, 9-14.
  • Elko, N., Feddersen, F., Foster, D., Hapke, C., McNinch, J., Mulligan, R., Özkan-Haller, H.T., Plant, N., Raubenheimer, B., 2015. The future of nearshore processes research. Shore & Beach 83(1), 13-38.
  • Emery, K.O., Kuhn, G.G., 1982. Sea cliffs: their processes, profiles and classification. Geological Society of America Bulletin 93 (7), 644-654.
  • Estrada, F., González-Vida, J.M., Peláez, J.A., Galindo-Zaldívar, J., Ortega, S., Macías, J., Vázquez, J.T., Ercilla, G., 2021. Tsunami generation potential of a strike-slip fault tip in the westernmost Mediterranean. Scientific Reports 11, 16253. https://doi.org/10.1038/s41598-021-95729-6
  • EUROSION, 2004. Living with coastal erosion in Europe: Sediment and space for sustainability: PART I – Major findings and policy recommendations of the EUROSION project. European Commission, Directorate General Environment, 57 p., Brussels
  • Evans, B.R., Brooks, H., Chirol, C., Kirkham, M.K., Möller, I., Royse, K., Spencer, K., Spencer, T., 2022. Vegetation interactions with geotechnical properties and erodibility of salt marsh sediments. Estuarine, Coastal and Shelf Science 265, 107713. https://doi.org/10.1016/j.ecss.2021.107713
  • Evelpidou, N., Kampolis, I., Pirazzoli, P.A., Vassilopoulos, A., 2012. Global sea-level rise and the disappearance of tidal notches. Global and Planetary Change 92-93, 248-256. https://doi.org/10.1016/j.gloplacha.2012.05.013.
  • Fairbridge, R. W., 1983. Isostacy and eustasy. In D.E. Smith, A.G. Dawson (eds.), Shorelines and Isostacy. Institute of British Geographers Special Publication 16, Academic, p. 3-25, London.
  • Fairbridge, R.W., 2004. Classification of coasts. Journal of Coastal Research 20, 155-165.
  • Fairley, I., Thomas, T., Phillips, M., Reeve, D., 2016. Terrestrial laser scanner techniques for enhancement in understanding of coastal environments. In C.W. Finkl, C. Makowski (eds.), Seafloor mapping along continental shelves. Coastal Research Library v.13, Springer, pp. 273-289. https://doi.org/10.1007/978-3-319-25121-9_11
  • Fernández-Montblanc, T., Del Río, L., Izquierdo, A., Gracia, F.J., Bethencourt, M., Benavente, J., 2018. Shipwrecks and man-made coastal structures as indicators of historical shoreline position. An interdisciplinary study in the Sancti Petri sand spit (Bay of Cádiz, SW Spain). Marine Geology 395, 152-167. https://doi.org/10.1016/j.margeo.2017.10.005
  • Fernández-Núñez, M., Burningham, H., Díaz-Cuevas, P., Ojeda-Zújar, J. 2019. Evaluating the response of Mediterranean-Atlantic saltmarshes to sea-level rise. Resources 8, 50. https://doi.org/10.3390/resources8010050
  • Ferreira, Ó. 2006. The role of storm groups in the erosion of sandy coasts. Earth Surface Processes and Landforms 31, 1058-1060. https://doi.org/10.1002/esp.1378
  • Fortunato, A.B., Freire, P., Mengual, B., Bertin, X., Pinto, C., Martins, K., Guérin, T., Azevedo, A., 2021. Sediment dynamics and morphological evolution in the Tagus Estuary inlet. Marine Geology 440, 106590. https://doi.org/10.1016/j.margeo.2021.106590
  • Flor, G., 2007. La geología en los deslindes de la Ley de Costas. Algunas recomendaciones y ejemplos orientativos. Tierra y Tecnología 31, 9-18.
  • Flor, G., Flor-Blanco, G., 2014. Raised beaches in the Cantabrian Coast. In F. Gutiérrez, M. Gutiérrez (eds.). Landscapes and Landforms of Spain. Springer, p. 239-248, https://doi.org/10.1007/978-94-017-8628-7_20
  • Flor-Blanco, G., Rubio-Melendi, D., Flor, G., Fernández-Álvarez, J.P., Jackson, D.W.T., 2016. Holocene evolution of the Xagó dune field (Asturias, NW Spain) reconstructed by means of morphological mapping and ground penetrating radar surveys. Geo-Marine Letters 36, 35-50. https://doi.org/10.1007/s00367-015-0427-1
  • Flor-Blanco, G., Alcántara-Carrió, J., Jackson, D.W.T., Flor, G., Flores-Soriano, C., 2021. Coastal erosion in NW Spain: Recent patterns under extreme storm wave events. Geomorphology 387, 107767. https://doi.org/10.1016/j.geomorph.2021.107767
  • Fraile, P., Álvarez-Francoso, J., Ojeda-Zújar, J., 2018. Cartografía de la probabilidad de inundación del litoral andaluz a finales del siglo XXI ante la subida del nivel del mar. Cuadernos Geográficos 57(2), 6-26. https://doi.org/10.30827/cuadgeo.v57i2.5899
  • French, J., Payo, A., Murray, B., Orford, J., Eliot, M., Cowell, P., 2016. Appropriate complexity for the prediction of coastal and estuarine geomorphic behaviour at decadal to centennial scales. Geomorphology 256, 3-16. https://doi.org/10.1016/j.geomorph.2015.10.005
  • Gangaiya, P., Beardsmore, A., Miskiewicz, T., 2017. Morphological changes following vegetation removal and foredune re-profiling at Woonona Beach, New South Wales, Australia. Ocean & Coastal Management 146, 15-25. https://doi.org/10.1016/j.ocecoaman.2017.05.015
  • García de Lomas, J., Gracia, F.J., García, C. 2011. Las dunas como hábitats de interés comunitario. Problemas de conservación. In Las dunas en España (E. Sanjaume, F.J. Gracia, eds.), S.E.G., p. 585-606.
  • Ghosh, A., 2019. Monitoring estuarine morphodynamics through quantitative techniques and GIS: A case study in Sagar Island, India. Journal of Coastal Conservation 23, 133-148. https://doi.org/10.1007/s11852-018-0643-8
  • Goff, J., Chagué-Goff, C., Nichol, S., Jaffe, B., Dominey-Howes, D. 2012. Progress in palaeotsunami research. Sedimentary Geology 243-244, 70-88. https://doi.org/10.1016/j.sedgeo.2011.11.002
  • Gómez, J.F., Kwoll, E., Walker, I.J, Shirzaei, M., 2021. Vertical land motion as a driver of coastline changes on a deltaic system in the Colombian Caribbean. Geosciences 11, 300. https://doi.org/10.3390/geosciences11070300
  • Gómez-Pujol, L., Cruslock, E., Fornós, J.J., Swantesson, J.O.H., 2006. Unravelling factors that control shore platforms and cliffs in microtidal coasts: the case of Mallorcan, Catalonian and Swedish coasts. Zeitschrift für Geomorphologie SupplBd 144, 117-135.
  • Gonçalves, G.R., Pérez, J.A., Duarte, J., 2018. Accuracy and effectiveness of low cost UASs and open source photogrammetric software for foredune mapping. International Journal of Remote Sensing 39, 5059-5077. https://doi.org/10.1080/01431161.2018.1446568
  • Goto, K., Miyagi, K., Kawamata, H., Imamura, F., 2010. Discrimination of boulders deposited by tsunamis and storm waves at Ishigaki Island, Japan. Marine Geology 269, 34-45. https://doi.org/10.1016/j.margeo.2009.12.004
  • Gracia, F.J., 2008. Costas bajas de la península Ibérica. In A. García-Cortés, J. Águeda, J. Palacio, C.I. Salvador (eds.). Contextos Geológicos Españoles. Una aproximación al patrimonio geológico español de relevancia internacional. Instituto Geológico y Minero de España, p. 192-199, Madrid.
  • Gracia, F.J., Alonso, C., Abarca, J.M., 2017. Evolución histórica y geomorfología de las explotaciones salineras en marismas mareales. Ejemplos de la bahía de Cádiz. Cuaternario y Geomorfología 31 (1-2), 45-72. https://doi.org/10.17735/cyg.v31i1-2.54681
  • Gracia, F.J., Anfuso, G., Benavente, J., Del Río, L., Domínguez, L., Martínez, J.A., 2005. Monitoring coastal erosion at diferente temporal scales on Sandy beaches: application to the Spanish Gulf of Cádiz coast. Journal of Coastal Research S.I. 49, 22-27.
  • Gracia, F.J., Alonso, C., Benavente, J., Anfuso, G., Del Río, L., 2006. The different coastal records of the 1755 tsunami waves along the South Atlantic Spanish coast. Zeitschrift für Geomorphologie SupplBd. 146, 195-220. https://doi.org/0044-2798/06/0146-0195.
  • Granger, P., Kalaugher, P.G., 1987. Intermittent surging movements of a coastal landslide. Earth Surface Processes and Landforms 12, 597-603. https://doi.org/10.1002/esp.3290120603
  • Grottoli, E., Biausque, M., Rogers, D., Jackson, D.W.T., Cooper, J.A.G., 2021. Structure-from-Motion-derived digital surface models from historical aerial photographs: A new 3D application for coastal dune monitoring. Remote Sensing 13, 95. https://doi.org/10.3390/rs13010095
  • Guisado-Pintado, E., Jackson, D.W.T., 2019. Coastal impact from high-energy events and the importance of concurrent forcing parameters: The cases of Storm Ophelia (2017) and Storm Hector (2018) in NW Ireland. Frontiers in Earth Science 7, 190. https://doi.org/10.3389/feart.2019.00190
  • Hansen, J.M., Aagaard, T., Binderup, M., 2011. Absolute sea levels and isostatic changes of the eastern North Sea to central Baltic region during the last 900 years. Boreas 41, 180-208. https://doi.org/10.1111/j.1502-3885.2011.00229.x
  • Hapke, C.J., Kratzmann, M.G., Himmelstross, E.A., 2013. Geomorphic and human influence on large-scale coastal change. Geomorphology 199, 160-170. https://doi.org/10.1016/j.geomorph.2012.11.025
  • Haynes, T.A., Angus, S., Scanlan, C., Bhatti, N., 2017. Developing a saltmarsh monitoring methodology to meet multiple policy and management objectives in Scotland. Journal of Coastal Conservation 21, 445-452. https://doi.org/10.1007/s11852-017-0512-x
  • Héquette, A., Cartier, A., Schmitt, F.G. 2021. The effects of tidal translation on wave and current dynamics on a barred macrotidal beach, northern France. Journal of Marine Science and Engineering 9, 909. https://doi.org/10.3390/jmse9080909
  • Hesp, P.A., 2013. Conceptual models of the evolution of transgressive dune field systems. Geomorphology 199, 138-149. https://doi.org/10.1016/j.geomorph.2013.05.014
  • Hofstede, J.L.A., Becherer, J., Burchard, H., 2018. Are Wadden Sea tidal systems with a higher tidal range more resilient against sea level rise? Journal of Coastal Conservation 22, 71-78. https://doi.org/10.1007/s11852-016-0469-1
  • Hooke, J. (Ed.), 1998. Coastal defence and Earth Science conservation. The Geological Society, Bath, 270 p.
  • Houser, C., Wernette, P., Weymer, B.A., 2018. Scale-dependent behaviour of the foredune: Implications for barrier island response to storms and sea-level rise. Geomorphology 303, 362-374. https://doi.org/10.1016/j.geomorph.2017.12.011
  • Houston, J.A., Edmondson, S.E., Rooney, P.J. (eds.), 2001. Coastal dune management. Shared experience of European conservation practice. Liverpool University Press, 458 p.
  • Huggett, R.J., 2011. Fundamentals of Geomorphology, Third edition. Routledge, 516 p., London.
  • Ikehara, K., Usami, K., Irino, T., Omura, A., Jenkins, R.G., Ashi, J., 2021. Characteristics and distribution of the event deposits induced by the 2011 Tohoku-oki earthquake and tsunami offshore of Sanriku and Sendai, Japan. Sedimentary Geology 411, 105791. https://doi.org/10.1016/j.sedgeo.2020.105791
  • IPCC. 2013. Climate change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Izquierdo, T., Abad, M., Rodríguez-Vidal, J., Ruiz, F., González-Regalado, M.L., 2019. Análisis de la vulnerabilidad de las poblaciones costeras de la provincia de Huelva (suroeste de España) ante tsunamis. Revista de la Sociedad Geológica de España 32 (1), 25-42.
  • Jackson, N.L., Nordstrom, K.F., 2020. Trends in research on beaches and dunes on sandy shores, 1969-2019. Geomorphology 366, 106737. https://doi.org/10.1016/j.geomorph.2019.04.009
  • Jankowski, K. L., Törnqvist, T. E., Fernandes, A. M., 2017. Vulnerability of Louisiana's coastal wetlands to present‐day rates of relative sea‐level rise. Nature Communications 8, 14792. https://doi.org/10.1038/ncomms14792
  • Jenks, G.K., 2018. Restoring the natural functional capacity of coastal dune ecosystems: Utilising research records for New Zealand littoral refurbishment as a proxy for analogous global responses Journal of Coastal Conservation 22, 623-665. https://doi.org/10.1007/s11852-018-0598-9
  • Jevrejeva, S., Moore, J.C., Grinsted, A., Matthews, A.P., Spada, G., 2014. Trends and acceleration in global and regional sea levels since 1807. Global and Planetary Change, 113, 11-22. https://doi.org/10.1016/j.gloplacha.2013.12.004
  • Jiménez, J.A., Sallenger, A.H., Fauver, L., 2007. Sediment transport and barrier island changes during massive overwash events. 30th Intern. Conference on Coastal Engineering ICCE 2006, 2870-2879. https://doi.org/10.1142/9789812709554_0242
  • Kelsey, H.M. 2015. Geomorphological indicators of past sea levels. In I. Shennan, A.J. Long, B.P. Horton (eds.). Handbook of sea-level research. John Wiley & Sons, p. 66-82.
  • Kemp, A.C., Horton, B.P., Donnelly, J.P., Mann, M.E., Vermeer, M., Rahmstorf, S., 2011. Climate related sea-level variations over the past two millennia. PNAS 108 (27), 11017-11022. https://doi.org/10.1073/pnas.1015619108
  • King, C.A.M., 1951. Depth of disturbance of san don sea beaches by waves. Journal of Sedimentary Petrology 21(3), 131-140.
  • Kombiadou, K., Matias, A., Ferreira, Ó., Carrasco, A.R., Costas, S., Plomaritis, T., 2019. Impacts of human interventions on the evolution of the Ria Formosa barrier island system (S. Portugal). Geomorphology 343, 129-144. https://doi.org/10.1016/j.geomorph.2019.07.006
  • Konlechner, T.M., Kennedy, D.M., Cousens, R.D., Woods, J.L.D., 2019. Patterns of early-colonising species on eroding to prograding coasts; implications for foredune plant communities on retreating coastlines. Geomorphology 327, 404-416. https://doi.org/10.1016/j.geomorph.2018.11.013
  • Kraus, N.C., 1999. Analytical model of spit evolution and inlets. Proceedings of Coastal Sediments’99, ASCE, p. 1739-1754.
  • Krelling, A.P., Williams, A.T., Turra, A., 2017. Differences in perception and reaction of tourist groups to beach marine debris that can influence a loss of tourism revenue in coastal areas. Marine Policy 85, 87-99. https://doi.org/10.1016/j.marpol.2017.08.021
  • Labuz, T., 2016. A review of field methods to survey coastal dunes – experience based on research from South Baltic coast. Journal of Coastal Conservation 20, 175-190. https://doi.org/10.1007/s11852-016-0428-x
  • Lario, J., Zazo, C., Goy, J.L., Silva, P.G., Bardají, T., Cabero, A., Dabrio, C.J., 2011. Holocene palaeotsunami catalogue of SW Iberia. Quaternary International 242, 196-200. https://doi.org/10.1016/j.quaint.2011.01.036
  • Lavigne, F., Paris, R., Grancher, D., Wassmer, P., Brunstein, D., Vautier, F., Leone, F., Flohic, F., De Coster, B., Gunawan, T., Gomez, C., Setiawan, A., Cahyadi, R., Fachrizal, F., 2009. Reconstruction of tsunami inland propagation on December 26, 2004 in Banda Aceh, Indonesia, through field investigations. Pure and Applied Geophysics 166, 259-281. https://doi.org/10.1007/s00024-008-0431-8
  • Lee, E.M., 2008. Coastal cliff behaviour: Observations on the relationship between beach levels and recession rates. Geomorphology 101, 558-571. https://doi.org/10.1016/j.geomorph.2008.02.010
  • Ley, C., Gallego, J.B., Vidal, C., 2007. Manual de restauración de dunas costeras. Dirección General de Costas, Ministerio de Medio Ambiente, 252 p., Santander.
  • Li, S.H., Ge, Z.M., Xin, P., Tan, L.S., Li, Y.L., Xie, L.N., 2021. Interactions between biotic and abiotic processes determine biogeomorphology in Yangtze Estuary coastal marshes: Observation with a modelling approach. Geomorphology 395, 107970. https://doi.org/10.1016/j.geomorph.2021.107970.
  • Limber, P.W., Murray, A.B., 2011. Beach and sea-cliff dynamics as a driver of long-term rocky coastline evolution and stability. Geology 39(12), 1147-1150. https://doi.org/10.1130/G32315.1
  • Lira, C.P., Silva, A.N., Taborda, R., Andrade, C.F., 2016. Coastline evolution of Portuguese low-lying sandy coast in the last 50 years: an integrated approach. Earth System Science Data 8, 265-278. https://doi.org/10.5194/essd-8-265-2016
  • López, M., Baeza-Brotons, F., López, I., Tenza-Abril, A.J., Aragonés, L., 2019. Factors influencing the rate of beach sand wear: Activation layer thickness and sediment durability. Science of the Total Environment 658, 367-373. https://doi.org/10.1016/j.scitotenv.2018.12.211
  • López-Fernández, C., Llana-Fúnez, S., Fernández-Viejo, G., Domínguez-Cuesta, M.J., Díaz-Díaz, L.M., 2020. Comprehensive characterization of elevated coastal platforms in the north Iberian margin: A new template to quantify uplift rates and tectonic patterns. Geomorphology 364, 107242. https://doi.org/10.1016/j.geomorph.2020.107242
  • López-García, P., Gómez-Enri, J., Muñoz-Pérez, J.J., 2019. Accuracy assessment of wave data from altimeter near the coast. Ocean Engineering 178, 229-232. https://doi.org/10.1016/j.oceaneng.2019.03.009
  • Losada, M., Baquerizo, A., Santiago, J.M., Ávila, A., Moreno, I., Ortega-Sánchez, M., 2008. Sea level variability and coastal evolution. Proceedings 31th International Conference on Coastal Engineering (ICCE), vol. 3, 2077-2085. https://doi.org/10.1142/9789814277426_0171
  • Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., Aarninkhof, S., 2018. The state of the world’s beaches. Scientific Reports 8, 6641. https://doi.org/10.1038/s41598-018-24630-6
  • Malvarez, G., Ferreira, O., Navas, F., Cooper, J.A.G., Gracia-Prieto, F.J., Talavera, L., 2021. Storm impacts on a coupled human-natural coastal system: Resilience of developed coasts. Science of the Total Environment 768, 144987. https://doi.org/10.1016/j.scitotenv.2021.144987.
  • Mancini, F., Dubbini, M., Gattelli, M., Stecchi, F., Fabbri, S., Gabbianelli, G. 2013. Using Unmanned Aerial Vehicles (UAV) for high-resolution reconstruction of topography: the structure from motion approach on coastal environments. Remote Sensing 5, 6880-6898. https://doi.org/10.3390/rs5126880
  • Manno, G., Anfuso, G., Messina, E., Williams, A.T., Suffo, M., Liguori, V., 2016. Decadal evolution of coastline armouring along the Mediterranean Andalusia littoral (South of Spain). Ocean & Coastal Management 124, 84-99. https://doi.org/10.1016/j.ocecoaman.2016.02.007.
  • Marcos, M., Puyol, B., Wöppelmann, G., Herrero, C., García-Fernández, M.J., 2003. The long sea level record at Cadiz (southern Spain) from 1880 to 2009. Journal of Geophysical Research 116. https://doi.org/10.1029/2011JC007558
  • Marriner, N., Morhange, C., Faivre, S., Flaux, C., Vacchi, M., Miko, S., Dumas, V., Boetto, G., Rossi, I.R. 2014. Post-Roman sea-level changes on Pag Island (Adriatic Sea): Dating Croatia’s “enigmatic” coastal notch? Geomorphology 221, 83-94. https://doi.org/10.1016/j.geomorph.2014.06.002
  • Martínez-Graña, A.M., Boski, T., Goy, J.L., Zazo, C., Dabrio, C.J. 2016. Coastal-flood risk management in central Algarve: Vulnerability and flood risk índices (South Portugal). Ecological Indicators 71, 302-316. https://doi.org/10.1016/j.ecolind.2016.07.021
  • Martínez-Loriente, S., Sallarès, V., Gràcia, E., 2021. The Horseshoe Abyssal plain Thrust could be the source of the 1755 Lisbon earthquake and tsunami. Communications Earth & Environment 2, 145. https://doi.org/10.1038/s43247-021-00216-5
  • Mas-Pla, J., Zuppi, G.M. (eds.), 2009. Gestión ambiental integrada de áreas costeras. Rubes Editorial, 284 p., Barcelona
  • Masselink, G., Castelle, B., Scott, T., Dodet, G., Suanez, S., Jackson, D., Floc’h, F., 2016. Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophysical Research Letters 43, 2135-2143. https://doi.org/10.1002/2015GL067492
  • Mattei, G., Rizzo, A., Anfuso, G., Aucelli, P.P.C., Gracia, F.J., 2019. A tool for evaluating the archaeological heritage vulnerability to coastal processes: The case study of Naples Gulf. Journal of Coastal Conservation 179, 104876. https://doi.org/10.1016/j.ocecoaman.2019.104876
  • McLachlan, R.L., Ogston, A.S., Asp, N.E., Fricke, A.T., Nittrouer, C.A., Schettini, A.F., 2020. Morphological evolution of a macrotidal back-barrier environment: The Amazon Coast. Sedimentology 67, 3492-3512. https://doi.org/10.1111/sed.12752
  • Mitri, G., Nader, M., Dagher, M.A., Gebrael, K., 2020. Investigating the performance of Sentinel-2A and Landsat 8 imagery in mapping shoreline changes. Journal of Coastal Conservation 24, 40. https://doi.org/10.1007/s11852-020-00758-4
  • Molina, R., Manno, G., Lo Re, C., Anfuso, G., Ciraolo, G., 2019. Storm energy flux characterization along the Mediterranean coast of Andalusia (Spain). Water 11, 509. https://doi.org/10.3390/w11030509.
  • Montoya, I., Rodríguez, I., Sánchez, M.J., Alcántara-Carrió, J., Martín, S., Gómez-Ortiz, D., Martín-Crespo, T., 2012. Mapping of landslide susceptibility of coastal cliffs: the Mont-Roig del Camp case study. Geologica Acta 10(4), 439-455. https://doi.org/10.1344/105.000001776
  • Mooser, A., Anfuso, G., 2018. Playas y paisaje. Editorial UCA, 301 p., Cádiz.
  • Morales, J.A., 2022. Coastal geology. Springer Nature, 463 p., https://doi.org/10.1007/978-3-030-96121-3
  • Morales, J.A., Gutiérrez Mas, J.M., Borrego, J., Rodríguez-Ramírez, A., 2011. Sedimentary characteristics of the Holocene tsunamigenic deposits in the coastal systems of the Cádiz Gulf (Spain). In The tsunami threat–Research and technology (N.A. Mörner, Ed.), InTech, Rijeka, Croatia, 237-258.
  • Morhange, C., Marriner, N., Laborel, J., Todesco, M., Oberlin, C., 2006. Rapid sea-level movements and noneruptive crustal deformations in the Phlegrean Fields caldera, Italy. Geology 34, 93-96. https://doi.org/10.1130/G21894.1
  • Morhange, C., Pirazzoli, P.A., Evelpidou, N., Marriner, N., 2012. Late Holocene tectonic uplift and the silting up of Lechaion, the Western harbour of Ancient Corinth, Greece. Geoarchaeology 27, 278-283. https://doi.org/10.1002/geo.21388
  • Mörner, N.A., 2019. Development of ideas and new trends in modern sea level research: The Pre-Quaternary, Quaternary, Present and Future. In M. Ramkumar, R.A. James, D. Menier, K. Kumaraswamy (eds.). Coastal Zone Management Coastal Zone Management – Global perspectives, regional processes, local issues. Elsevier, 15-61, https://doi.org/10.1016/B978-0-12-814350-6.00002-1
  • Moura, D., Gabriel, S., Ramos-Pereira, A., Neves, M., Trindade, J., Viegas, J., Veiga-Pires, C., Ferreira, Ó., Matias, A., Jacob, J., Boski, T., Santana, P., 2011. Downwearing rates on shore platforms of different calcareous lithotypes. Marine Geology 286, 112-116. https://doi.org/10.1016/j.margeo.2011.06.002
  • Nagle-McNaughton, T., Cox, R., 2020. Measuring change using quantitative differencing of repeat Structure-From-Motion photogrammetry: the effect of storms on coastal boulder deposits. Remote Sensing 12, 42. https://doi.org/10.3390/rs12010042
  • Navarro, M., Muñoz-Pérez, J.J., Román-Sierra, J., Ruiz-Cañavate, A., Gómez-Pina, G., 2015. Characterization of wind-blown sediment transport with height in a highly mobile dune (SW Spain). Geologica Acta 13, 155-166. https://doi.org/10.1344/GeologicaActa2015.13.2.6
  • Neumann, B., Vafeidis, A.T., Zimmermann, J., Nicholls, R.J., 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding - a global assessment. PLoS ONE 10(3), e0118571. https://doi.org/10.1371/journal.pone.0118571
  • Neves, M., 2008. Anthropogenic modifications in the erosional rhythm of a coastal cliff. Rocha do Gronho (western coast of Portugal). Journal of Iberian Geology 34, 299-312.
  • Nordstrom, K.F., 2019. Coastal dunes with resistant cores. Journal of Coastal Conservation 23, 227-237. https://doi.org/10.1007/s11852-018-0653-6
  • Nunn, P.D., Creach, A., Gehrels, W.R., Bradley, S.L., Armit, I., Stéphan, P., Sturt, F., Baltzer, A., 2021. Observations of postglacial sea-level rise in northwest European traditions. Geoarchaeology (in press). https://doi.org/10.1002/gea.21898
  • Oliveros, F., Barragán, J.M., Chica, J.A., Pérez Cayeiro, M.L., 2008. Propuesta de Estrategia Andaluza de Gestión Integrada de Zonas Costeras. Consejería de Medio Ambiente, Junta de Andalucía, 256 p., Cádiz.
  • Orombelli, G., Pranzini, E., 2020. Considerations on coastal protection and management. Rendiconti Lincei. Scienze Fisiche e Naturali 31, 365-368. https://doi.org/10.1007/s12210-020-00912-y
  • Orrù, P.E., Mastronuzzi, G., Deiana, G., Pignatelli, C., Piscitelli, A., Solinas, E., Spanu, P.G., Zucca, R., 2014. Sea level changes and geoarchaeology between the bay of Capo Malfatano and Piscinnì Bay (SW Sardinia) in the last 4 kys. Quaternary International 336, 180-189. https://doi.org/10.1016/j.quaint.2014.03.054
  • Otvos, E.G., 2000. Beach ridges – definitions and significance. Geomorphology 32, 83-108. https://doi.org/10.1016/S0169-555X(99)00075-6
  • Paris, P.J., Mitasova, H., 2018. Geospatial contrasts between natural and human-altered barrier island systems: Core Banks and Ocracoke Island, North Carolina, U.S.A. Journal of Coastal Conservation 22, 679-694. https://doi.org/10.1007/s11852-018-0601-5
  • Payo, A., Hall, J.W., French, J., Sutherland, J., Van Maanen, B., Nicholls, R.J., Reeve, D.E., 2016. Causal Loop Analysis of coastal geomorphological systems. Geomorphology 256, 36-48. https://doi.org/10.1016/j.geomorph.2015.07.048.
  • Peña-Alonso, C., Gallego-Fernández, J.B., Hernández-Calvento, L., Hernández-Cordero, A.I., Ariza, E., 2018. Assessing the geomorphological vulnerability of arid beach-dune systems. Science of the Total Environment 635, 512-525. https://doi.org/10.1016/j.scitotenv.2018.04.095
  • Pérez-Alberti, A., Trenhaile, A.S., 2015. An initial evaluation of drone-based monitoring of boulder beaches in Galicia, north-western Spain. Earth Surface Processes and Landforms 40, 105-111. https://doi.org/10.1002/esp.3654
  • Pérez-Hernández, E., Ferrer-Valero, N., Hernández-Calvento, L., 2020. Lost and preserved coastal landforms after urban growth. The case of Las Palmas de Gran Canaria city (Canary Islands, Spain). Journal of Coastal Conservation 24(3), 26. https://doi.org/10.1007/s11852-020-00743-x
  • Peterson, C.H., Bishop, M.J., 2005. Assessing the environmental impacts of beach nourishment. BioScience 55, 887-896. https://doi.org/10.1641/0006-3568(2005)055[0887:ATEIOB]2.0.CO;2
  • Pilkey, O.H., 2003. Barrier Islands. Columbia University Press, 309 p., New York.
  • Pilkey, O.H., Neal, W.J., Kelley, J.T., Cooper, J.A.G., 2011. The world’s beaches. University of California Press, 283 p., Berkeley.
  • Pierik, H.J., Cohen, K.M., Stouthamer, E., 2016. A new GIS approach for reconstructing and mapping dynamic late Holocene coastal plain palaeogeography. Geomorphology 270, 55-70. https://doi.org/10.1016/j.geomorph.2016.05.037
  • Plomaritis, T.A., Benavente, J., Del Río, L., Reyes, E., Dastis, C., Gómez, M., Bruno, M., 2012. Storm early warning system as a last plug-in of a regional operational oceanography system: the case of the Gulf of Cádiz. Coastal Engineering Proceedings 33. https://doi.org/10.9753/icce.v33.management.54
  • Pourkerman, M., Marriner, N., Morhange, C., Djamali, M., Amjadi, S., Lahijani, H., Beni, A.N., Vacchi, M., Tofighian, H., Shah-Hoesseini, M., 2018. Tracking shoreline eorison of “at risk” coastal archaeology: the example of ancient Siraf (Iran, Persian Gulf). Applied Geography 101, 45-55. https://doi.org/10.1016/j.apgeog.2018.10.008
  • Puertas, E., Aparicio, J.A. (eds.), 2020. Turismo azul y seguro. Fundamentos para la gestión de los riesgos costeros. Círculo Rojo, 132 p., Almería.
  • Quevauviller, P., Ciavola, P., Garnier, E., 2017. Management of the effects of coastal storms. Wiley, 172 p.
  • Rahman, R., Plater, A.J., 2014. Particle-size evidence of estuary evolution: A rapid and diagnostic tool for determining the nature of recent saltmarsh accretion. Geomorphology 213, 139-152. https://doi.org/10.1016/j.geomorph.2014.01.004
  • Randazzo, G., Jackson, D.W.T., Cooper, J.A.G. (Eds.). 2015. Sand and gravel spits. Springer Coastal Research Library 12, 344 p., https://doi.org/10.1007/978-3-319-13716-2
  • Rangel-Buitrago, N., Neal, W.J., De Jonge, V.N., 2020. Risk assessment as tool for coastal erosion management. Ocean and Coastal Management 186, 105099. https://doi.org/10.1016/j.ocecoaman.2020.105099
  • Reed, D., Van Wesenbeeck, B.V., Herman, P.M.J., Meselhe, E., 2018. Tidal flat-wetland systems as flood defences: Understanding biogeomorphic controls. Estuarine, Coastal and Shelf Science 213, 269-282. https://doi.org/10.1016/j.ecss.2018.08.017
  • Reeve, D.E., Horrillo-Caraballo, J., Karunarathna, H., Pan, S., 2019. A new perspective on meso-scale shoreline dynamics through data-driven analysis. Geomorphology 341, 169-191. https://doi.org/10.1016/j.geomorph.2019.04.033
  • Ribera, P., Gallego, D., Pena-Ortiz, C., Del Río, L., Plomaritis, T.A., Benavente, J. 2011, Reconstruction of Atlantic historical winter coastal storms in the Spanish coasts of the Gulf of Cádiz, 1929-2005. Natural Hazards and Earth System Sciences 11, 1715-1722. https://doi.org/10.5194/nhess-11-1715-2011
  • Ris, R.C., Holthuijsen, L.H., Booij, N., 1999. A third-generation wave model for coastal regions: 2. Verification. Journal of Geophysical Research 104-C4, 7667-7681. https://doi.org/10.1029/1998JC900123
  • Rodríguez-Perea, A., Pons, G.X., Roig-Munar, F.X., Martín-Prieto, J.A., Mir-Gual, M., Cabrera, J.A. (Eds.) 2013. La gestión integrada de playas y dunas: experiencias en Latinoamérica y Europa. Monografías de la Sociedad de Historia Natural de Baleares, 19, 401 p.
  • Rodríguez-Polo, S., Gracia, F.J., Benavente, J., Del Río, L., 2009. Geometry and recent evolution of the Holocene beach ridges of the Valdelagrana littoral spit (Cádiz Bay, SW Spain). Journal of Coastal Research S.I. 56, 20-23.
  • Rodríguez-Ramírez, A., Morales, J.A., Delgado, I., Cantano, M., 2008. The impact of man on the morphodynamics of the Huelva coast (SW Spain). Journal of Iberian Geology 34(2), 313-327.
  • Rodríguez-Ramírez, A., Yáñez-Camacho, C.M. 2008. Formation of chenier plain of the Doñana marshland (SW Spain): Observations and geomorphic model. Marine Geology 254, 187-196. https://doi.org/10.1016/j.margeo.2008.06.006
  • Rodríguez-Rosales, B., Abreu, D., Ortiz, R., Becerra, J., Cepero-Acán, A.E., Vázquez, M.A., Ortiz, P., 2021. Risk and vulnerability assessment in coastal environments applied to heritage buildings in Havana (Cuba) and Cádiz (Spain). Science of the Total Environment 750, 141617. https://doi.org/10.1016/j.scitotenv.2020.141617
  • Rodríguez-Vidal, J., Cáceres, L.M., Finlayson, J.C., Gracia, F.J., Martínez-Aguirre, A., 2004. Neotectonics and shoreline history of the Rock of Gibraltar, southern Iberia. Quaternary Science Reviews 23 (18-19), 2017-2029. https://doi.org/10.1016/j.quascirev.2004.02.008
  • Roelvink, D., Costas, S., 2019. Coupling nearshore and aeolian processes: XBeach and duna process-based models. Environmental Modelling & Software 115, 98-112 https://doi.org/10.1016/j.envsoft.2019.02.010
  • Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel de Vries, J., McCall, R., Lescinski, J. 2009. Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering 56, 1133-1152. https://doi.org/10.1016/j.coastaleng.2009.08.006
  • Rosser, N.J., Petley, D.N., Lim, M., Dunning, S.A., Allison, R.J. 2005. Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Quarterly Journal of Engineering Geology and Hydrogeology 38, 363-375. https://doi.org/10.1144/1470-9236/05-008
  • Röth, J., Mathes-Schmidt, M., Jiménez García, I., Rojas Pichardo, F.J., Grützner, C., Silva, P. G. Reicherter, K., 2015. The Baelo Claudia tsunami hypothesis - results from a multi-method sediment analysis of late-Roman deposits (Gulf of Cádiz, Southern Spain). Proceedings 6th INQUA International Workshop on Palaeoseismology, Archaeoseismology and Active Faulting, 50-53 p., Fucino, Italy.
  • Ruiz, F., Rodríguez-Vidal, J., Cáceres, L.M., Carretero, M.I., Pozo, M., Rodríguez-Llanes, J.M., Gómez-Toscano, F., Izquierdo, T., Font, E., Toscano, A., 2013. Sedimentological and geomorphological imprints of Holocene tsunamis in southwestern Spain: An approach to establish the recurrence period. Geomorphology 203, 97-104. https://doi.org/10.1016/j.geomorph.2013.09.008
  • Ruiz de Alegría-Arzaburu, A., Gasalla-López, B., Benavente, J., 2022. Morphological response of an embayed beach to swell-driven storminess cycles over an 8-year period. Geomorphology 403, 108164. https://doi.org/10.1016/j.geomorph.2022.108164
  • Ruiz-Pérez, J.M., Carmona, P. 2019. Turia river delta and coastal barrier-lagoon of Valencia (Mediterranean coast of Spain): Geomorphological processes and global climate fluctuations since Iberian-Roman times. Quaternary Science Reviews 219, 84-101. https://doi.org/10.1016/j.quascirev.2019.07.005
  • Sallenger, A.H., Krabill, W., Brock, J., Swift, R., Manizade, S., Stockdon, H., 2002. Sea-cliff erosion as a function of beach changes and extreme wave runup during the 1997-1998 El Niño. Marine Geology 187, 279-297. https://doi.org/10.1016/S0025-3227(02)00316-X.
  • Sampath, D.M.R., Boski, T., Silva, P.L., Martins, F.A., 2011. Morphological evolution of the Guadiana estuary and intertidal zone in response to projected sea-level rise and sediment supply scenarios. Journal of Quaternary Science 26(2), 156-170. https://doi.org/10.1002/jqs.1434
  • Sánchez-García, E., Palomar-Vázquez, J., Pardo-Pascual, J., Almonacid-Caballer, J., Cabezas-Rabadán, C., Gómez-Pujol, L., 2020. An efficient protocol for accurate and massive shoreline definition from mid-resolution satellite imagery. Coastal Engineering 160, 103732. https://doi.org/10.1016/j.coastaleng.2020.103732
  • Sánchez Román, A., García-Lafuente, J., Delgado, J., Sánchez-Garrido, J.C., Naranjo, C., 2012. Spatial and temporal variability of tidal flow in the Strait of Gibraltar. Journal of Marine Systems 98-99, 9-17. https://doi.org/10.1016/j.jmarsys.2012.02.011
  • Sander, L., Hede, M.U., Fruergaard, M., Nielsen, L., Clemmensen, L.B., Kroon, A., Johannessen, P.N., Nielsen, L.H., Pejrup, M., 2015. Coastal lagoons and beach ridges as complementary sedimentary archives for the reconstruction of Holocene relative sea-level changes. Terra Nova 28, 43-49. https://doi.org/10.1111/ter.12187
  • Sanjosé, J.D., Serrano, E., Berenguer, F., González-Trueba, J.J., Gómez-Lende, M., González-García, M., Guerrero-Castro, M., 2016. Evolución histórica y actual de la línea de costa en la playa de Somo (Cantabria), mediante el empleo de la fotogrametría aérea y escáner láser terrestre. Cuaternario y Geomorfología 30, 119-130; https://doi.org/10.17735/cyg.v30i1-2.41464
  • Scardino, G., Piscitelli, A., Milella, M., Sansó, P., Mastronuzzi, G., 2020. Tsunami fingerprints along the Mediterranean coasts. Rendiconti Lincei Scienze Fisiche e Naturali 31, 319-335. https://doi.org/10.1007/s12210-020-00895-w
  • Scheffers, A., Kelletat, D., 2003. Sedimentologic and geomorphologic tsunami imprints worldwide - a review. Earth-Science Reviews 63, 83-92. https://doi.org/10.1016/S0012-8252(03)00018-7
  • Schmidt, P.E. (Ed.), 2011. River deltas: Types, structures and ecology. Nova Science Publishers, 186 p., New York.
  • Schubert, J.E., Gallien, T.W., Majd, M.S., Sanders, B.F., 2015. Terrestrial Laser Scanning of anthropogenic beach berm erosion and overtopping. Journal of Coastal Research, 31, 47-60; https://doi.org/10.2112/JCOASTRES-D-14-00037.1
  • Shanmugam, G., 2012. Process-sedimentological challenges in distinguishing paleo-tsunami deposits. Natural Hazards 63, 5-30. https://doi.org/10.1007/s11069-011-9766-z
  • Small, C., Nicholls, R.J., 2003. A global analysis of human settlement in coastal zones. Journal of Coastal Research, 19(3), 584-599.
  • Speybroeck, J., Bonte, D., Courtens, W., Gheskiere, T., Grootaert, P., Maelfait, J.P., Mathys, M., Provoost, S., Sabbe, K., Stienen, E.W.M., Van Lancker, V.V., Vincx, M., Degraer, S., 2006. Beach nourishment: an ecologically sound coasts difference alternative? A review. Aquatic Conservation: Marine and Freshwater Ecosystems, 16, 419-435. https://doi.org/10 1002/aqc733
  • Sunamura, T., 1992. Geomorphology of rocky coasts. John Wiley, 302 p., Chichester.
  • Sunamura, T., 2005. Cliffs, erosion rates, lithology versus erosion rates. In M.L. Schwartz (Ed.). Encyclopedia of Coastal Science. Springer, 240-243 p., Dordrecht,; https://doi.org/10.1007/1-4020-3880-1_72.
  • Talavera, L., Del Río, L., Benavente, J., Barbero, L., López-Ramírez, J.A., 2018. UAS as tools for rapid detection of storm-induced morphodynamic changes at Camposoto beach, SW Spain. International Journal of Remote Sensing 39 (15-16), 5550-5567. https://doi.org/10.1080/01431161.2018.1471549
  • Taylor, M., Stone, G.W., 1996. Beach-Ridges: A review. Journal of Coastal Research, 12(3), 612-621.
  • Trenhaile, A.S., 1987. The Geomorphology of Rock Coasts. Oxford University Press, Clarendon, Oxford, UK.
  • Trenhaile, A.S., Porter, N.J., 2007. Can shore platforms be produced solely by weathering processes? Marine Geology 241, 79-92. https://doi.org/10.1016/j.margeo.2007.03.005
  • Tsimplis, M., Spada, G., Marcos, M., Flemming, N., 2011. Multi-decadal sea level trends and land movements in the Mediterranean Sea with estimates of factors perturbing tide gauge data and cumulative uncertainties. Global and Planetary Change, 76, 63-76. https://doi.org/10.1016/j.gloplacha.2010.12.002
  • Tsujimoto, H., 1987. Dynamic conditions for shore platform initiation. Science Report, Institute of Geoscience. University of Tsukuba, 8A: 45-93.
  • Umitsu, M., Tanavud, C., Patanakanog, B., 2007. Effects of landforms on tsunami flow in the plains of Banda Aceh, Indonesia, and Nam Khem, Thailand. Marine Geology, 242, 141-153. https://doi.org/10.1016/j.margeo.2006.10.030
  • Vacchi, M., Marriner, N., Morhange, C., Spada, G., Fontana, A., Rovere, A., 2016. Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth Science Reviews 155, 172-197. https://doi.org/10.1016/j.earscirev.2016.02.002
  • Van Bemmelen, C.W.T., De Schipper, M.A., Darnall, J., Aarninkhof, S.G.J., 2020. Beach scarp dynamics at nourished beaches. Coastal Engineering 160, 103725. https://doi.org/10.1016/j.coastaleng.2020.103725
  • Van Rijn, L.C., Walstra, D.J.R., Van Ormondt, M., 2007. Unified view of sediment transport by currents and waves. IV: Application to morphodynamic model. Journal of Hydraulic Engineering 133 (7), 776-793. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:7(776)
  • Vao, K.N., Pandey, S., Kubo, S., Saito, Y., Kumar, K.Ch.V.N., Demudu, G., Malini, B.H., Nagumo, N., Nakashima, R., Sadakata, N., 2020. Paleoclimate and Holocene relative sea-level history of the east coast of India. Journal of Paleolimnology 64, 71-89. https://doi.org/10.1007/s10933-020-00124-2
  • Vázquez Pinillos, F.J., Marchena Gómez, M.J., 2021. Territorial impacts of sea-level rise in marsh environments. The case of the Bay of Cádiz, Spain. Cuadernos de Investigación Geográfica 47(2), 523-543. https://doi.org/10.18172/cig.4531
  • Vecchio, A., Anzidei, M., Serpelloni, E., Florindo, F. 2019. Natural variability and vertical land motion contributions in the Mediterranean sea-level records over the last two centuries and projections for 2100. Water 11, 1480. https://doi.org/10.3390/w11071480
  • Vousdoukas, M.I., Voukouvalas, E., Mentaschi, L., Dottori, F., Giardino, A., Bouziotas, D., Bianchi, A., Salamon, P., Feyen, L., 2016. Developments in large-scale coastal flood hazard mapping. Natural Hazards and Earth System Science 16, 1841-1853. https://doi.org/10.5194/nhess-16-1841-2016
  • Wang, G., Li, J., Ravi, S., Van Pelt, R.S., Costa, P.J.M., Dukes, D., 2017. Tracer techniques in aeolian research: Approaches, applications, and challenges. Earth-Science Reviews 170, 1-16. https://doi.org/10.1016/j.earscirev.2017.05.001
  • Warrick, J.A., Ritchie, A.C., Adelman, G., Adelman, K., Limber, P.W., 2017. New techniques to measure cliff change from historical oblique aerial photographs and Structure-from-Motion Photogrammetry. Journal of Coastal Research 33, 39-55. https://doi.org/10.2112/JCOASTRES-D-16-00095.1
  • Welman, H.W., Wilson, A.T., 1965. Salt weathering, a neglected geological erosion agent in coastal and arid environments. Nature 205, 1097-1098. https://doi.org/10.1038/2051097a0
  • Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., Reynolds, J.M., 2012. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021
  • Whelan, F., Kelletat, D., 2005. Boulder deposits on the southern Spanish Atlantic coast: Possible evidence for the 1755 AD Lisbon tsunami? Science of Tsunami Hazards 23 (3), 25-38.
  • Wilkinson, M.W., Jones, R.R., Woods, C.E., Gilment, S.R., McCaffrey, K.J.W., Kokkalas, S., Long, J.J., 2016. A comparison of terrestrial laser scanning and structure-from-motion photogrammetry as methods for digital outcrop acquisition. Geosphere 12, 1865-1880. https://doi.org/10.1130/GES01342.1
  • Williams, A.T., Randerson, P., Di Giacomo, C., Anfuso, G., Macías, A., Perales, J.A., 2016. Distribution of beach litter along the coastline of Cádiz, Spain. Marine Pollution Bulletin 107, 77-87. https://doi.org/10.1016/j.marpolbul.2016.04.015
  • Wolff, C., Vafeidis, A.T., Muis, S., Lincke, D., Satta, A., Lionello, P., Jiménez, J.A., Conte, D., Hinkel, J., 2018. A Mediterranean coastal database for assessing the impacts of sea-level rise and associated hazards. Scientific Data 5, 180044. https://doi.org/10.1038/sdata.2018.44
  • Wolters, M.L., Kuenzer, C., 2015. Vulnerability assessments of coastal river deltas – categorization and review. Journal of Coastal Conservation 19, 345-368. https://doi.org/10.1007/s11852-015-0396-6
  • Young, A.P., Flick, R.E., Gutiérrez, R., Guza, R.T., 2009. Comparison of short-term seacliff retreat measurement methods in Del Mar, California. Geomorphology 112, 318-323. https://doi.org/10.1016/j.geomorph.2009.06.018
  • Zazo, C., Dabrio, C.J., Goy, J.L., Lario, J., Cabero, A., Silva, P.G., Bardaji, T., Mercier, N., Borja, F., Roquero, E., 2008. The coastal archives of the last 15 ka in the Atlantic-Mediterranean Spanish linkage area: sea level and climate changes. Quaternary International 181, 72-87. https://doi.org/10.1016/j.quaint.2007.05.021
  • Zhang, M., Dai, Z., Bouma, T.J., Bricker, J., Towned, I., Wen, J., Zhao, T., Cai, H., 2021. Tidal-flat reclamation aggravates potential risk from storm impacts. Coastal Engineering 166, 103868. https://doi.org/10.1016/j.coastaleng.2021.103868
  • Zviely, D., Klein, M., 2004. Coastal Cliff retreat rates at Beit-Yannay, Israel, in the 20th century. Earth Surface Processes and Landforms 29, 175-184 https://doi.org/10.1002/esp.1019