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A B S T R A C T

Spectral instruments can be useful for the rapid assessment of chemical compounds in different targets, and
their use have been already reported for the modeling of grape composition comparing two spectral ranges.
Still, with the increased easiness of acquiring data with several sensors, it would be valuable to explore
spectral fusion techniques for the modeling with deep learning, seeking to obtain improved performance.
Therefore, the objective of this work was to develop multi-sensor spectral fusion approaches for the deep
learning modeling of grape composition. From 128 grape samples, two spectra per sample were acquired from
two different ranges using two sensors (visible and shortwave near infrared, 570–1000 nm; and wider NIR
1100–2100 nm). From each sample, 15 grape nitrogen compounds were analyzed by wet chemistry. Three
different data fusion approaches are defined using neural networks and deep learning, testing several ways of
structuring and merging the input spectra. Statistical analyses supported that (i) the proposed deep learning
fusion architectures performed better than single spectral range models, and (ii) neural networks have better
modeling capabilities than partial least squares in spectral fusion. The results demonstrate the potential of
deep learning for spectral data fusion in grape nitrogen composition regression, and potentially other traits in
food and agriculture spectroscopy.
. Introduction

The use of sensors is a critical part of chemometrics, as they provide
ata that can be useful for the rapid monitoring and modeling of im-
ortant parameters from many samples [1]. Within the different sensing
echnologies, optical spectrometers have proven their effectiveness in
odeling chemical compounds in many applications [2–4]. Neverthe-

ess, it is frequent that the target parameter sought to be modeled is
oo complex for its effective analysis using a single instrument—in the
ase of spectroscopy, a single spectral range usually, as the spectral
esponse could be present in a different range, or a combination of
hese. For this reason, research on the sensor or source-data fusion
as been explored in chemometrics in many occasions, seeking to
xtract better information from the samples by the combination of
ifferent sensing techniques, spectral ranges or even appending data
rom chemical measurements [5]. This sensor and data fusion strategy,
ften referred as to multi-block analysis in chemometrics, has proven
ffective for many applications [6], especially when combined with
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classical classification and regression methods like partial least squares
(PLS) [7,8].

Machine and deep learning have attracted the attention regarding
the modeling of spectral data for years. While classical multivariate
techniques are common in chemometrics (principal component anal-
ysis, PLS, etc.), they are limited to linear relationships between the
spectra and the target chemical, although this is often sufficient. Ma-
chine learning techniques such as fully connected neural networks and
support vector machines have been successfully applied for the training
of prediction models from spectral data [9,10], while more recently
deep learning techniques like convolutional neural networks have also
worked with spectral input, testing especially one-dimensional filters
that convolve over the spectral dimension [11–13]. The strengths of the
backpropagation for the training of neural networks are indisputable,
including the modeling of spectral data, that is featured by a general
presence of collinearity between adjacent or very close wavelengths.
While neural network models have been reported for spectral data,
few works can be found about spectral fusion by neural networks.
vailable online 2 June 2023
566-2535/© 2023 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).

ttps://doi.org/10.1016/j.inffus.2023.101865
eceived 21 April 2023; Received in revised form 26 May 2023; Accepted 29 May
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

2023

https://www.elsevier.com/locate/inffus
http://www.elsevier.com/locate/inffus
mailto:salvaguti@decsai.ugr.es
mailto:maria-paz.diago@unirioja.es
https://doi.org/10.1016/j.inffus.2023.101865
https://doi.org/10.1016/j.inffus.2023.101865
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2023.101865&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Information Fusion 99 (2023) 101865S. Gutiérrez et al.

f
p
s
t
m
(
e

Additionally to this, we found useful the possibility of designing and
testing different deep learning architectures for spectral data fusion,
under the same conditions for reliable comparison.

In food and agriculture, viticulture has benefited from the use of
spectral sensors for the monitoring of plants and fruit [14]. Within the
latter, the rapid assessment of chemical compounds from grape berries
is a topic commonly addressed with different spectral ranges and instru-
ments [15,16]. This grape composition assessment from spectral sensor
is also very useful due to its potential of estimating several grape com-
pounds (of different families) from the same source spectral data. Must
nitrogen and amino acids composition are highly relevant in winemak-
ing. Likewise, amino acids are key compounds for flavor metabolism,
yeast growth and fermentation kinetics [17,18]. Therefore, given the
already demonstrated usefulness of two separate spectral ranges for
the determination of the amino acids profile in grape berries [19], the
question arises as to whether spectral fusion of different spectral blocks
improves modeling when compared to individual ranges.

The work presented in this paper was motivated by two main
reasons: (i) the flexibility and potential of neural network architectures
for modeling spectral data (including the combination of several spec-
tral ranges in different structures), and (ii) the existence of previous
models for the same purpose using single spectral blocks, separately.
We hypothesize that, under the same samples and conditions, the fusion
of two spectral ranges will perform better than using them separately,
for the modeling of grape composition. Therefore, the objective of this
paper was to develop a multi-sensor spectral fusion approach with deep
learning to test if their performances are significantly improved against
models trained on individual ranges. The specific objectives are:

1. To define and implement different deep learning fusion architec-
tures.

2. To verify the performance boost of spectral fusion models vs
single spectrum baseline, on the prediction of 15 grape berry
nitrogen compounds.

3. To test the influence of deep learning models against partial least
squares regression, both with data fusion.

4. To analyze the significance of different spectral pre-treatments,
providing the best model for each grape berry compound.

2. Related works

Data fusion has been attempted in agriculture via different method-
ologies. One approach is the use of two or more sensors of different
nature. Fusion of spectral and thermal data has been reported as a
successful combination for yield prediction in spring barley [20], and
also for soybean phenotyping using extreme machine learning [21].
The combination of spectroscopy and fluorescence has helped in the
monitoring of mineral oil quality [22] and the classification of different
tea types [23]. Finally, sensor fusion has been explored in grapevines
for transpiration monitoring [24], water status assessment [25] or
spatio-temporal delineation [26]. Another common approach is the
use of two different – usually disjoint – spectral ranges (multi-block
analysis). Crude oil classification was achieved by means of the Fourier-
transform near and mid infrared spectroscopy [27], while the fusion of
data from the same ranges was reported for quality traits prediction
in tuber flours [28]. Ultraviolet visible and near infrared blocks was
combined for the analysis of a wide range (from 800 to 2500 nm)
to determine the active ingredient in deltamethrin formulation using
extreme machine learning [29]. Finally, multi-block analysis has been
applied using deep learning architectures for dry matter estimation in
mangoes [30].

Regarding the use of deep learning to model spectral data in food
and agriculture, convolutional neural networks have been used to
train models for the prediction of total soluble solids in pears [31],
alteration in coffee beans [32] or the determination of fungal contami-
nation in maize [33]. In chemometrics, deep learning has been used
2

for augmentation and classification in infrared spectroscopy [34]. A
common approach has been the use of 1-dimensional convolutional
operations (spectral dimension) [13,30,35,36], but newer approaches
have been also attempted, like transformers [37,38] or deep generative
techniques [39,40].

3. Methodology

3.1. Data collection

Grape sampling involved the harvesting of grape clusters along five
different dates from a commercial vineyard in La Rioja (Spain), in
the span of three months (from August to October, 2015). At each
collection date, clusters were transported to laboratory in portable
refrigerators and then stored at −20 ◦C until spectral and chemical
processing. We considered the influence of freezing the samples to be of
little significance based on previous studies in grapes [41,42]. Once the
collection time frame finished, clusters (identified by its picking date)
were thawed to select and take 35 representative berries (one sample)
from top, mid and bottom parts.

Spectral signals from the samples were acquired with two spec-
trometers covering (i) the visible and shortwave near infrared (VIS-
SWNIR range), and (ii) a wider near infrared range (WNIR range).
Specifically, the VIS-SWNIR sensor was Polytec PSS 1050 working in
the 570–1000 nm spectral range, while the WNIR sensor was a PSS
2120 working in the 1100–2100 nm range. Both having a spectral
resolution of 2 nm, the VIS-SWNIR spectra involved 215 datapoints
(𝑑vis−swnir = 215), and the WNIR sensor returned spectra with 501
datapoints (𝑑wnir = 501). Both spectrometers operate with sensor heads
or reflected light capturing attached to their corresponding spectral
rocessing unit (VIS-SWNIR or WNIR), connected by optic fiber. Each
ensor head is equipped with embedded sample illumination (20 W
ungsten halogen lamp), white reference 𝑊 (material with a theoretical
aximum light reflectance property) and dark current measurement 𝐷

accounting for the baseline signal from the device’s electrical interfer-
nces, thermal fluctuations, etc.). With this, at a given wavelength 𝜆,

the reflectance is computed as:

𝑅𝜆 =
𝑆𝜆 −𝐷𝜆
𝑊𝜆 −𝐷𝜆

, (1)

where 𝑆𝜆 is the light intensity from the sample at wavelength 𝜆.
Absorbance spectra 𝐴 can be computed from Eq. (1) as:

𝐴𝜆 = log(1∕𝑅𝜆). (2)

As each sample comprised 35 berries, and this number was too large
for the sensor head to cover every berry, each sample was divided in
seven batches of five berries each, taking one spectral measurement
per batch. Finally, the spectrum corresponding to each sample was
obtained by averaging the seven spectral measurements. A total of
𝑁 = 128 samples were obtained.

After the acquisition of spectral data, each sample (group of 35
berries) was prepared for amino acids and total soluble solids analysis
(TSS) by wet chemistry. Full details on the procedure is provided in [19,
43]. A total of 22 amino acids per sample were analyzed (full descrip-
tion in [19]), and the same 15 compounds modeled with PLS in [19]
were selected to be modeled with deep learning. Table 1 summarizes
the names and statistics of each nitrogen compound modeled.

3.2. Spectral fusion proposals

Three different spectral fusion neural network architectures were
designed and implemented, differing in the way both spectra are struc-
tured for input. We first describe briefly each architecture:

1. concat : Simple concatenation of both spectral ranges in a fully
connected neural network. Section 3.2.1.
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Table 1
Statistical summary of the 15 grape compounds analyzed on 𝑁 = 128 samples and modeled. All nitrogen
compounds are expressed in mg N/l, while total soluble solids is expressed in ◦Brix. std: Standard deviation;
SEL: standard error of laboratory.

Abbreviation Full name min max mean std SEL

Asp Aspartic acid 0.43 3.50 1.61 0.69 0.10
Glu Glutamic acid 0.41 5.53 2.20 1.11 0.14
Ans Asparagine 0.54 4.94 1.91 0.96 0.08
Gly Glycine 0.36 2.39 1.17 0.48 0.20
Cit Citrulline 0.00 5.38 1.11 0.92 0.15
GABA 𝛾-aminobutyric acid 1.45 18.23 9.13 3.08 0.51
Tyr Tyrosine 0.12 2.29 0.83 0.50 0.01
Val Valine 0.12 4.74 1.07 0.67 0.01
Trp Tryptophan 0.28 7.17 3.00 1.44 0.05
Phe Phenylalanine 0.13 4.92 1.23 0.74 0.01
Ile Isoleucine 0.03 3.15 0.63 0.46 0.01
Leu Leucine 0.01 6.26 1.23 0.92 0.04
Lys Lysine 0.21 3.58 1.40 0.66 0.22
Pro Proline 1.23 121.16 33.61 25.57 3.48
TSS Total soluble solids 7.90 32.30 22.92 5.75 0.19
2. parallel: The two spectra stacked in a two-dimensional structure,
using convolution operations for feature extraction and fully
connected layers for regression. Section 3.2.2.

3. split : Each spectrum is fed to the network separately, using
convolutional modules specific for each spectral range. The two
separate outputs of this feature extraction is then joined and
forwarded to fully connected layers for regression. Section 3.2.3.

We first present some definitions common to all architectures, and
then we describe each in the following subsections. All tensors are
written with capital letters, and one-dimensional tensors are structured
as column vectors. With 𝑑vis−swnir = 215, 𝑑wnir = 501 (Section 3.1), the
tensor 𝑋vis−swnir ∈ R𝑑vis−swnir is a spectrum (sample) from the visible
sensor, and the tensor 𝑋wnir ∈ R𝑑wnir is a spectrum (sample) from the
WNIR sensor, both linked with their corresponding values for the 15
grape compounds (Table 1). We define ⊕ ∶ R𝑛 × R𝑚 → R𝑛+𝑚 as the
operator one-dimensional tensor concatenation:

𝐴⊕𝐵 ∶=
[

𝑥1 𝑥2 ⋯ 𝑥𝑛 𝑦1 𝑦2 ⋯ 𝑦𝑚
]⊤ , 𝐴 ∈ R𝑛, 𝐵 ∈ R𝑚. (3)

In all neural network function definitions, a trainable bias term is
assumed to be added to each weight tensor matrix 𝑊 , but it is omitted
for better readability.

3.2.1. One dimensional concatenation
Tihs is a fully connected network with one hidden layer—a mul-

tilayer perceptron (Fig. 1). The input layer is the concatenation of
VIS-SWNIR and WNIR spectra into a single tensor (with a size of
716 points), forwarded to a hidden layer of 1025 units (with ReLU
as activation function) and finally converging into a single neuron as
output.

Defined as 𝑓concat ∶ R𝑑vis−swnir × R𝑑wnir → R:

𝑓concat
(

𝑋vis−swnir , 𝑋wnir
)

= relu
(

(𝑋vis−swnir ⊕𝑋wnir )⊤ ⋅𝑊ℎ
)

⋅𝑊𝑜𝑢𝑡, (4)

with 𝑊ℎ ∈ R𝑑×1024, 𝑑 = 𝑑vis−swnir + 𝑑wnir as a hidden layer, and 𝑊𝑜𝑢𝑡 ∈
R1024×1 as the output layer, that maps the input to a single continuous
value.

3.2.2. Parallel structure
A convolutional neural network with two modules: feature extrac-

tion with two-dimensional convolutional layers, and regression with
fully connected layers (Fig. 2). The input spectra is rearranged into
a two-dimensional parallel structure, with the VIS-SWNIR spectrum
stretched and stacked over the WNIR spectrum. The convolutional and
fully connected layers are partially based on network architectures
previously tested on spectral data [44,45].

Defined as 𝑓 ∶ R𝑑vis−swnir × R𝑑wnir → R:
3

parallel
Fig. 1. Network design for the concat architecture. Data flow is bottom-up. The input
is the concatenation of both spectral ranges, and the three layers are fully connected.

Fig. 2. Network design for the parallel architecture. Data flow is bottom-up. The
two input spectra are reshaped into a two dimensional structure, and feed into two
2-dimensional convolutional layers and afterwards into fully connected layers.

𝑓parallel
(

𝑋vis−swnir , 𝑋wnir
)

= Densep
(

vec
(

Convp
(

stack(𝑋vis−swnir , 𝑋wnir )
))

)

,

(5)
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Fig. 3. Network design for the split architecture. Data flow is bottom-up. The two input
spectra are feed into two independent groups of convolutional layers. Their respective
outputs are concatenated and forwarded to fully connected layers.

where the function stack ∶ R𝑑vis−swnir × R𝑑wnir → R2×𝑑wnir merges two
separate tensors (in this case, spectrum tensors) into a two-dimensional
tensor with the two spectra in parallel (upsampling 𝑋vis−swnir with
linear interpolation to match 𝑋wnir dimension 𝑑wnir). The function vec
vectorizes (flattens) the input tensor 𝑋 ∈ R𝑛×𝑚 into:

vec
(

𝑋
)

∶=
[

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑚 𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑚 ⋯ 𝑥𝑛,𝑚
]⊤ .

(6)

The functions named Convp and Densep refer to neural networks
(modules) for the feature extraction with convolution operations, and
for the regression modeling with fully connected layers, respectively.
Given a two spectra tensor 𝐴 ∈ R2×𝑛, Convp is defined as:

Convp(𝐴) = relu
(

relu
(

𝐴⊛𝑊1
)

⊛𝑊2
)

, (7)

with 𝑊1 ∈ R30×2×30 and 𝑊2 ∈ R10×2×10 as weight parameters of two-
dimensional convolution filters, with 30 and 10 one-channel filters with
dimensions 2 × 30 and 2 × 10, respectively.

Given a flattened tensor 𝐵 ∈ R𝑚, Densep is defined as:

Densep(𝐵) = relu
(

relu(𝐵⊤ ⋅𝑊1) ⋅𝑊2
)

⋅𝑊𝑜𝑢𝑡, (8)

with 𝑊1 ∈ R𝑚×20, 𝑊2 ∈ R20×20, and 𝑊𝑜𝑢𝑡 ∈ R20×1 as the weights from
the fully connected layers

3.2.3. Split spectral feature extraction
A convolutional neural network with two separated spectral inputs

(Fig. 3), inspired by [30]. Feature extraction is done using two sepa-
rated one-dimensional convolutional layers, each affecting one spectral
range (VIS-SWNIR or WNIR). Regression is done with fully connected
layers, after joining the two outputs from the feature extraction. As in
Section 3.2.2, the convolutional and fully connected layers are partially
based on networks previously tested on spectral data [44,45] (see
Fig. 3).

Defined as 𝑓split ∶ R𝑑vis−swnir × R𝑑wnir → R:

𝑓split
(

𝑋vis−swnir , 𝑋wnir
)

= Denses
(

vec
(

Convs
(

𝑋vis−swnir
))

⊕ vec
(

Convs
(

𝑋wnir
))

)

. (9)
4

The functions named Convs and Denses refer to neural networks
(modules) for the feature extraction with convolution operations, and
for the regression modeling with fully connected layers, respectively.
Although Convs is used twice in Eq. (9), both are independent modules,
with their own trainable parameters, so no weight sharing is done.
Given a spectrum tensor 𝐴 ∈ R𝑛, and a concatenated, flattened tensor
𝐵 ∈ R𝑚, Convs and Denses are then defined as:

Convs(𝐴) = relu
(

relu
(

𝐴⊛𝑊1
)

⊛𝑊2
)

, (10)

with 𝑊1 ∈ R30×30 and 𝑊2 ∈ R10×10 as the weight parameters of 30
and 10 one-dimensional convolution filters of dimensions 30 and 10,
respectively, and

Denses(𝐵) = relu
(

relu(𝐵⊤ ⋅𝑊1) ⋅𝑊2
)

⋅𝑊𝑜𝑢𝑡, (11)

with 𝑊1 ∈ R𝑚×20, 𝑊2 ∈ R20×20, and 𝑊𝑜𝑢𝑡 ∈ R20×1 as the weights from
the fully connected layers.

3.3. Modeling

All neural network architectures were developed using PyTorch
1.13 on Python 3.9. The specific module architecture for each fusion
approach is presented in Fig. 4. The concat network (Fig. 4a) involved
the linear transformation of the input (the concatenation of the two
spectral ranges) into 1024 neurons and, after activation with ReLU,
the mapping of those into a single output scalar, with no activation.
The parallel and split networks (Fig. 4b and c) forward the input into
two consecutive convolutional modules (in the case of split, this is done
separately, with independent modules), and then they flatten the data
to two more linear modules (in the case of split, the two separated
outputs from convolutions are first flattened and then merged into one
structure). Each convolutional layer has attached processes for batch
normalization and dropout (𝑝 = 0.4). All modeling layers output to
a ReLU activation function, except the last neuron, that maps to a
continuous scalar.

Optimization of the neural networks was done using the Adam al-
gorithm (learning rate of 0.001), using mean squared error (MSE) with
respect to the real grape composition values for the loss calculation:

𝐿MSE = 1
𝑁

𝑁
∑

𝑘=1
(𝑝𝑘 − 𝑦𝑘)2, (12)

where 𝑝 is the predicted value and 𝑦 is the actual grape composition
value. Batch size was set to 32 and the training of each model stopped
at 2000 epochs. The selection of the mentioned values for hyperparam-
eters was performed after a supervised grid search on several random
data combinations (target, spectral pre-processing, etc.) with values
based on our previous experience. For each model, training was done
with 80% of the samples, using the remaining 20% for validation. As
in [19], data partition was designed so as to samples are randomly
assigned to each dataset, but ensuring the preservation of the grape
compound distribution in both subsets, to assure that results from data
fusion are comparable to the original publication.

Spectral data can be treated with many pre-processing techniques
[46], and this can greatly influence in the performance of the trained
models. For this reason, for each grape compound model, a large
combination of spectral pre-processing parameters were used for the
training of several models. The spectral variations explored were the
following:

• Spectral mode: Presenting the spectrum as reflectance or ab-
sorbance.

• Scatter correction: Applying (true) standard normal variate and
detrending to the spectrum, or not applying scatter correction
(false).

• Spectral smoothing: Using Savitzky–Golay filtering (true) or not
using it (false).
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Fig. 4. Module architectures of the three fusion neural networks proposals.
Table 2
Description of the values of each parameter used for the training of the models in this work. The combination of all these parameter
values for the training of models for the prediction of each one of the 15 grape composition targets makes up a total of 𝑛 = 2520 trained
models.

Parameter Value Description

Spectral mode reflectance The spectrum is input as reflectance (Eq. (1)).
absorbance The spectrum is input as absorbance (Eq. (2)).

Scatter correction true Scatter correction is applied to the spectrum.
false No scatter correction.

Spectral smoothing
(Savitzky–Golay filtering)

true The spectrum is smoothed with a Savitzky–Golay filtering.
false No spectral smoothing

Derivative order (only when
spectral smoothing is applied)

first The Savitzky–Golay filtering is done with a first-order derivative.
second The Savitzky–Golay filtering is done with a second-order derivative.

Window size (only when spectral
smoothing is applied)

5 Window size of 5 for the Savitzky–Golay filtering.
9 Window size of 9 for the Savitzky–Golay filtering.
15 Window size of 15 for the Savitzky–Golay filtering.

Model

concat Neural network architecture described in Section 3.2.1.
parallel Neural network architecture described in Section 3.2.2.
split Neural network architecture described in Section 3.2.3.
wnir Neural network similar to concat but only with the WNIR range.
vis-swnir Neural network similar to concat but only with the Vis-SWNIR range.
pls PLS modeling with both spectral ranges concatenated in one dimension.
• Derivative order: using first or second derivative order, only
when Savitzky–Golay filtering is applied.

• Window size: smoothing window size of 5, 9 or 15, again only
when Savitzky–Golay filtering is used.

The combination of all these spectral pre-processing parameters
were used for the training of models for all the 15 grape composition
targets, and for the three neural networks architectures (concat, parallel
and split). Apart from these, additional models were trained using an
architecture similar to concat (Section 3.2.1), but only considering VIS-
SWNIR spectra as input (vis-swnir network), and also only considering
WNIR spectra (wnir network). This was done to test the influence of
spectral fusion vs models from individual ranges. Finally, to test the
performance of neural networks fusion models against techniques used
in the original work [19], PLS models (pls) were trained using as input
the concatenation of VIS-SWNIR and WNIR spectra (like the concat,
vis-swnir and wnir networks). The PLS implementation used was from
scikit-learn 1.2.1 [47], retaining no more than seven latent variables.
A summary of all the parameters used for modeling is presented in
Table 2.
5

With all these parameters, the proper combination of them all made
up a total of 𝑛 = 2520 trained models. Training was done in parallel on
two NVIDIA GeForce RTX 4090 with 24 GB of vRAM each, requiring
approximately 20 h.

3.4. Statistical analyses

With all the models obtained from the combination of different ar-
chitectures, pre-processing, etc. (Section 3.3), the influence of
different parameters were examined using analysis of variance. For
each individual model (from the 𝑛 = 2520 total number of models),
the performance results were the MSE (the loss function used in neural
network optimization, Eq. (12)) and the determination coefficient (𝑅2),
taken from the model with the lowest validation error for the 2000
epochs. Statistical tests were carried out using InfoStat software [48],
version 2020, using Tukey’s range test at a significance level 𝑝 = 0.05.
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Table 3
Best models per grape composition target among deep learning fusion (concat, parallel and split) and baseline models (models trained only with one spectral
range). Baseline models refer to the best models trained with the VIS-SWNIR or WNIR range, using neural networks (fifth column group, using an architecture
similar to concat, Section 3.3) and PLS (sixth column group), reported in [19]. The results with the highest 𝑅2 per target are underlined. MSE: Mean squared
error. SEP: Standard error of prediction, as reported in [19]. In all cases, error values are expressed in mg N/l, except for total soluble solids, expressed in
◦Brix.

Target Deep learning fusion models Baseline models

concat parallel split Neural networks PLS from [19]

MSE 𝑅2 MSE 𝑅2 MSE 𝑅2 MSE 𝑅2 SEP 𝑅2

Asp 0.188 0.70 0.212 0.63 0.227 0.65 0.224 0.63 0.130 0.60
Glu 0.741 0.54 0.534 0.61 0.734 0.63 1.362 0.65 0.490 0.46
Ans 0.658 0.37 0.520 0.46 0.558 0.41 0.704 0.47 0.203 0.66
Gly 0.119 0.57 0.066 0.75 0.150 0.63 0.130 0.53 0.090 0.37
Cit 0.745 0.55 0.373 0.55 1.141 0.54 0.407 0.62 0.260 0.43
GABA 6.656 0.47 5.027 0.53 5.299 0.49 6.641 0.52 6.350 0.32
Tyr 0.241 0.83 0.051 0.83 0.047 0.81 0.242 0.79 0.068 0.63
Val 0.376 0.43 0.217 0.46 0.301 0.48 0.254 0.55 0.123 0.59
Trp 0.724 0.67 0.832 0.66 0.704 0.70 0.953 0.66 0.608 0.58
Phe 0.238 0.55 0.215 0.62 0.238 0.55 0.272 0.58 0.152 0.43
Ile 0.071 0.63 0.091 0.57 0.095 0.49 0.090 0.59 0.044 0.52
Leu 0.307 0.64 0.275 0.70 0.289 0.68 0.448 0.61 0.270 0.34
Lys 0.297 0.37 0.315 0.37 0.262 0.40 0.319 0.49 0.194 0.62
Pro 248.220 0.66 156.800 0.76 251.571 0.65 279.057 0.71 306.250 0.63
TSS 3.038 0.95 2.307 0.95 2.137 0.95 2.022 0.96 2.528 0.91
a
c

c
d

4. Experimental results

All mean comparison performed and shown in this section (by
analysis of variance) were partitioned and analyzed individually for
each grape compound, as the interaction between nitrogen compound
(Table 1) and type of model (concat, parallel, split, vis-swnir, wnir, pls)

as found to be statistically significant (𝑝 < 0.0001).

.1. Deep learning fusion models

The best results among fusion and baseline (individual spectral
ange) models are presented in Table 3, for each of the target grape
itrogen compounds. The values from the first three column groups
concat, parallel and split) come from models trained with both VIS-
WNIR and WNIR ranges, while the models reported in the last two
olumn groups, ‘‘Neural networks’’ and ‘‘PLS’’, can come from either
IS-SWNIR or WNIR ranges. As the determination coefficient values
an be compared among models, the results with the highest 𝑅2 per

target are underlined in Table 3.
In absolute terms, the best results came from fusion models in nine

out of 15 target nitrogen compounds, with special evidence in models
for predicting Asp, Gly, Tyr, Leu and Pro, that exhibited increases in
𝑅2 with large differences in comparison to the baseline PLS models.
Single range neural network models (fifth column group in Table 3)
were better in three times (for Glu, Cit, TSS) and, along with the
deep learning fusion models, they constituted the majority of the high-
performance results (in 12 out of 15 grape composition parameters) vs
PLS (the remaining three). The prediction of TSS is one case that can
be considered special, as a very high performance results came from all
models, demonstrating that the influence of this composition parameter
is strongly present in either VIS-SWNIR and WNIR ranges, and easily
modeled by any algorithm.

Given the absolute results from the three deep learning fusion
proposals proposed in this work, analysis of variance was done to
test if these fusion architectures–concat, parallel and split–did have
positive influence in the performance of trained models, compared to
the remaining models developed—vis-swnir, wnir and pls. The analyses,
again done for each grape nitrogen compound, are gathered in Table 4.

In all cases, the deep learning fusion models performed better than
the remaining ones (i.e., the errors were lower and the 𝑅2 values
were higher). Moreover, regarding the MSE, these differences were
significant in eight out of 15 targets, highlighting large differences
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for GABA (7.36 vs 8.63 mg N/l), Trp (1.07 vs 1.32 mg N/l) and
Pro (317.68 vs 361.17 mg N/l). Regarding the determination coeffi-
cients, significant differences between means were found for all grape
compounds, including those with non-significant differences in error
(Glu, Tyr, Val, Ile, Lys, Pro and TSS). These results manifest that the
proposed fusion architectures might benefit the prediction capabilities
over models trained from individual ranges. This hypothesis was also
tested previously by other authors in slightly similar ranges [30,49],
reporting the benefits of data fusion vs single block modeling. The deep
learning architectures were designed to handle all the data combina-
tions available – target, pre-processing, etc.–, allowing for a versatile
and adaptable approach. While it is acknowledged that the performance
of these models could potentially be further enhanced through fine-
tuning on individual datasets, the objective of the experiments was to
ensure comparability and consistency in the evaluation process. After
confirmed the superior performance from spectral fusion, fine-tuning of
specific models can be a logical step for their deployment in real-time
spectral applications for grape compound estimation.

4.2. Performance of deep learning against partial least squares for fusion
models

After finding significant differences for many grape compounds
in favor of the deep learning fusion models, these were individually
compared to PLS models trained with the concatenation of both VIS-
SWNIR and WNIR spectral ranges, to find if neural networks actually
improve the models’ prediction capability. The results of the analyses
are presented in Table 4.

Regarding the MSE values, pls means showed larger errors in almost
all cases compared to the three neural network architectures, resulting
in significant differences in 10 out of 15 grape nitrogen compounds
in favor of neural networks. Within these, the mean performance from
models trained with parallel yielded, in general, lower error values than
concat and split in all targets with significant differences (except for Pro
nd Trp), but the differences are not large, so no architecture exhibited
learly a significant increase in performance over the remaining ones.

When considering the determination coefficient (Table 5), signifi-
ant differences in means were found for all compounds. Additionally,
ifferences were in all cases balanced towards the methods (better 𝑅2

values for concat, parallel and split), except for TSS, in which models
trained with the parallel and split architectures achieved significantly
greater outputs than the others. Apart from this, it is necessary to high-
light that both parallel and split use convolutional modules (two and

one-dimensional, respectively) although with different input structures.
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Table 4
Analysis of variance between deep learning fusion models (concat, parallel and split) and the remaining ones
(vis-swnir, wnir and pls), for error and 𝑅2 values. DL fusion: Models trained with the proposed deep learning
fusion architectures. Rest: Models trained other techniques (single spectral range neural networks, or partial
least squares). Dissimilar lowercase letters indicate significant differences (ns: not significant, 𝑝 ≥ 0.05) using
the Student–Neumann–Keuls test. Letters of significance are associated to increased model performance, that
is descendent order of 𝑅2 and ascendent order of mean squared error. Error values are expressed in mg
N/l, except for total soluble solids, expressed in ◦Brix.

Target Mean squared error 𝑅2

DL fusion Rest 𝑝-value DL fusion Rest 𝑝-value

Asp 0.26a 0.29b 0.0001 0.54a 0.45b <0.0001
Glu 0.93 1.05 ns 0.45a 0.30b <0.0001
Ans 0.77a 0.85b 0.0010 0.28a 0.23b <0.0001
Gly 0.15a 0.17b <0.0001 0.44a 0.33b <0.0001
Cit 0.59a 0.85b 0.0001 0.36a 0.25b <0.0001
GABA 7.36a 8.63b 0.0002 0.36a 0.24b <0.0001
Tyr 0.12 0.13 ns 0.70a 0.63b <0.0001
Val 0.33 0.35 ns 0.36a 0.31b 0.0001
Trp 1.07a 1.32b <0.0001 0.56a 0.46b <0.0001
Phe 0.29a 0.34b 0.0005 0.45a 0.35b <0.0001
Ile 0.18 0.18 ns 0.40a 0.34b 0.0001
Leu 0.45a 0.58b <0.0001 0.51a 0.37b <0.0001
Lys 0.39 0.41 ns 0.28a 0.22b <0.0001
Pro 317.68a 361.17b ns 0.54a 0.51b 0.0101
TSS 5.76 6.69 ns 0.89a 0.84b 0.0077
Table 5
Comparison of means between the three proposed fusion architectures and PLS fusion
models. The models summarized in this table were all trained with the fusion of
both spectral ranges (VIS-SWNIR and WNIR), using deep learning (concat, parallel,
split) or partial least squares (pls). Dissimilar lowercase letters indicate significant
differences (ns: not significant, 𝑝 ≥ 0.05) using the Student–Neumann–Keuls test. Letters
of significance are associated to increased model performance, that is descendent order
of 𝑅2 and ascendent order of mean squared error. Error values are expressed in mg
N/l, except for total soluble solids, expressed in ◦Brix.

Target Mean squared error 𝑝-value

pls concat parallel split

Asp 0.28 0.27 0.27 0.25 ns
Glu 1.17 0.86 0.91 1.03 ns
Ans 0.90a 0.81b 0.73c 0.77bc <0.001
Gly 0.17a 0.15b 0.14b 0.14b <0.001
Cit 1.38a 0.71b 0.52b 0.54b <0.001
GABA 9.76a 8.37b 6.80c 6.91c <0.001
Tyr 0.11ab 0.15a 0.10b 0.12ab 0.032
Val 0.35 0.33 0.34 0.32 ns
Trp 1.52a 1.18b 1.05bc 0.97c <0.001
Phe 0.41a 0.29b 0.26b 0.32b <0.001
Ile 0.21 0.24 0.16 0.13 ns
Leu 0.69a 0.51b 0.42b 0.42b <0.001
Lys 0.47a 0.43a 0.37b 0.38b <0.001
Pro 367.1a 336.6b 315.2bc 301.2c <0.001
TSS 4.69 6.78 4.36 6.14 ns

Target 𝑅2 𝑝-value

pls concat parallel split

Asp 0.46b 0.54a 0.53a 0.55a <0.001
Glu 0.20c 0.41b 0.45a 0.48a <0.001
Ans 0.19b 0.27a 0.29a 0.27a <0.001
Gly 0.31b 0.40a 0.46a 0.45a <0.001
Cit 0.10c 0.31b 0.38a 0.38a <0.001
GABA 0.16c 0.30b 0.38a 0.40a <0.001
Tyr 0.57b 0.69a 0.71a 0.71a <0.001
Val 0.26c 0.33b 0.37a 0.38a <0.001
Trp 0.35c 0.52b 0.57a 0.60a <0.001
Phe 0.22c 0.42b 0.49a 0.44b <0.001
Ile 0.25c 0.36b 0.42a 0.42a <0.001
Leu 0.26b 0.47a 0.53a 0.52a <0.001
Lys 0.14c 0.26b 0.29a 0.29a <0.001
Pro 0.46b 0.52a 0.54a 0.55a <0.001
TSS 0.87bc 0.84c 0.92a 0.91ab <0.001

The results from Table 5 suggest that the input structure of the VIS-
SWNIR and WNIR spectra is not relevant in this case, as no significant
differences were found between the two convolutional architectures.
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The only exception to this was Phe, that benefited significantly more
from parallel (𝑅2 = 0.49) than split (𝑅2 = 0.44).

These results show that, at the same input (the fusion of both
spectral ranges), artificial neural networks performed better than PLS
in both error and 𝑅2 values, suggesting that neural networks are able
to extract more information from spectra than linear methods like
PLS. Previous work can be found also reporting better performance
from neural networks vs PLS, in spectral regression modeling [13] and
classification [50,51], also including one-dimensional convolutional
neural networks [11,12]. This reinforces the hypothesis that non-linear
methods perform better than PLS. Still, this behavior was not found
for all grape nitrogen compound models, and PLS, able to find linear
relations between the spectrum and the target, is powerful enough to
model certain chemical components.

4.3. Influence of spectral pre-processing in fusion models for each grape
nitrogen compound

Finally, the influence of the different spectral pre-processing tech-
niques tested were reported using analysis of variance. The results
are found in Table 6 (for better readability, only MSE values were
reported, and 𝑝-values were not provided). This table gathers the
means of all the trained models, separated and statistically analyzed
by the different spectral pre-processing values presented in Table 2.
The influence of using reflectance vs absorbance was not significant for
any compound (data not shown). This can be considered an expected
outcome as, even when the relation between reflection and absorbance
is not linear (Eq. (1)), modeling techniques are still able to identify
key features related to each target. This is more evident when using
neural networks, as they model non-linear relationships due to the use
of activation functions.

Applying scatter was mainly not relevant, and no significant differ-
ences between means were found in 12 out of 15 grape compounds.
Additionally, in the remaining three targets, no clear trend can be
derived (using or omitting scatter correction), so it can be concluded
that it has little to none influence in the results, for these ranges
and spectral acquisition conditions. The use of Savitzky–Golay filtering
was marginally more meaningful, as it provided better results (lower
MSE values in Table 6) depending on its use, and the derivative order
applied. In general, better results came from first derivative, but this
cannot be taken lightly as a general rule. Finally, regarding the window
size, the general trend is balanced towards the extreme values, as the
best performance per target is often found when using 5 or 15 as

window size.
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Table 6
Comparison of means of the mean squared error metrics attending to the different spectral pre-processing techniques tested. Dissimilar lowercase
letters indicate significant differences using the Student–Neumann–Keuls test (𝑝 ≥ 0.05). Letters of significance are associated to increased model
performance, that is descendent order of 𝑅2 and ascendent order of error. Values are expressed in mg N/l, except for total soluble solids,
expressed in ◦Brix.

Target Scatter correction Savitzky–Golay Window size

false true false first second 5 9 15

Asp 0.28 0.27 0.32b 0.26a 0.28a 0.29b 0.27a 0.27a
Glu 0.99 1.00 0.96ab 0.87a 1.12b 1.05 0.98 0.91
Ans 0.79 0.82 0.89b 0.77a 0.82ab 0.84 0.78 0.78
Gly 0.16 0.16 0.18b 0.15a 0.16a 0.16 0.16 0.15
Cit 0.69 0.75 0.7 0.78 0.67 0.71 0.72 0.73
GABA 7.84 8.15 8.16 8.19 7.75 7.56a 7.98ab 8.67b
Tyr 0.11b 0.15a 0.13 0.13 0.13 0.11 0.14 0.14
Val 0.35 0.33 0.33 0.32 0.37 0.33 0.32 0.38
Trp 1.22 1.17 1.41b 1.22a 1.10a 1.18ab 1.10a 1.32b
Phe 0.32 0.31 0.29 0.33 0.31 0.3 0.3 0.34
Ile 0.18 0.18 0.16 0.18 0.18 0.15 0.22 0.19
Leu 0.55a 0.48b 0.67b 0.49a 0.49a 0.54 0.47 0.52
Lys 0.4 0.41 0.4 0.4 0.41 0.41 0.39 0.4
Pro 354.63a 324.22b 316.14 343.31 343.31 327.36a 329.07a 367.88b
TSS 5.84 6.6 5.39a 3.98a 8.74b 8.06b 5.31a 4.38a
5. Conclusion

This work proposed three deep neural network architectures for the
spectral data fusion modeling of grape nitrogen composition, aiming
to demonstrate that the performance metrics improved models trained
from individual spectral ranges, previously tested. The results obtained
support this hypothesis, and evidence that deep learning is able to ben-
efit from data fusion for grape composition regression, and potentially
for other traits in food and agriculture.

Related to the specific objectives defined in Section 1, it can be
concluded that:

1. Deep neural networks favor the design of different architectures
for spectral data fusion, varying the ways spectral blocks are
structured.

2. Deep learning spectral fusion models performed significantly
better than models trained from single spectrum blocks, confirm-
ing the improvement of spectral fusion for the grape composition
modeling, and opening the fusion proposals for other targets.

3. Neural networks exhibited significant improvement when com-
pared to partial least squares, when using spectral fusion, in most
of the grape target compounds.

4. Spectral pre-processing had little influence in the outcomes, as
they did not provide significantly large differences in perfor-
mance metrics.
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