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a b s t r a c t

In viticulture, training a deep learning model to assess the number of berries in a cluster image
requires labeling by manually counting the berries on each grape cluster. This repeating, demanding
task directly opposes the need for large amounts of data of deep learning methods. The objective of
this work is the development of evolutionary conditional generative adversarial networks (GANs) for
supervised data augmentation in the task of assessing berry number per cluster in grapevine. Ninety-
seven grape cluster images were collected and labeled by manually counting the berries, making
up the original dataset, and it was used for the training of a conditional GAN using evolutionary
schemes involving a population of generators competing within a common and dynamic environment:
the discriminator. After generative networks training, the best performing generator was used for
supervised data augmentation: generation of labeled images conditioned to a berry number, making up
the augmented dataset. Two models were trained with one dataset each, original and augmented, both
having approximately the same number of samples, around 400. The original dataset was enriched
with traditional image transforms, while the augmented dataset had incorporated images from the
trained GAN generator. The two models were trained using the same convolutional regression network
architecture, and then tested on an external image dataset, with more than 1300 images not used in
any training, to compare the performance of GAN data augmentation. Results showed that the model
augmented with GANs yielded lower error values, with a validation error of 43 berries, than those
from the original model, with a validation error of 65 berries. In the test dataset, the augmented
model obtained an error of 39 berries (R2

= 0.75), surpassing again the original model, that obtained
an error of 57 berries (R2

= 0.65). These results evidence that evolutionary conditional GANs generate
synthetic labeled images that lead to higher performance deep learning regression models for assessing
berry number from cluster images.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

The application of machine and deep learning solutions is
reatly extended in many disciplines, but virtually all of them
re conditioned to a requisite that is frequently hard to ful-
ill: large amounts of quality data properly labeled. It is here
here generative learning highlight as potential mechanisms for
btaining quality labeled data with much less effort. One of
he most successful representations of DL mechanisms for syn-
hetic generation of data are generative adversarial networks
GANs) [1], especially used in computer vision for their quality in
mage synthesis [2]. The base concept of GANs was originally pre-
ented by Goodfellow et al. [3], proposing the deployment of two
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E-mail address: salvaguti@decsai.ugr.es (S. Gutiérrez).
ttps://doi.org/10.1016/j.asoc.2023.110805
568-4946/© 2023 Elsevier B.V. All rights reserved.
models—generator and discriminator—trained in an adversarial
environment. Generative adversarial networks, while powerful,
are hard to train since their conception, and this is known by
many of their users. The three main problems that occur in the
development of GANs are: (i) instability in convergence when
searching the needed equilibrium between both networks; (ii)
mode collapse, in which the generator learns the mechanisms
to map all the latent space into a very reduced set of outputs
that deceive the discriminator by mapping (in the case of image
generator, all created images are always very similar); and (iii)
vanishing gradients, that occur when the discriminator learns too
well in early iterations to distinguish between real and synthetic
samples, thus the generator is stuck in a low quality state that
does not allow to effectively improve due to very small gradients
(a consequence of the linked adversarial training).

Research in GANs have brought several new training mech-
anisms that improved the performance of the original proposal,

https://doi.org/10.1016/j.asoc.2023.110805
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ddressing the aforementioned problems, among others. Some of
hese improvements are mainly focused on modified objective
unctions, like: Least Squares GANs [4], based on least squares,
hat allow for better quality images and a more stable training;
he hinge loss, used in Geometric GANs [5]; or Fisher GANs [6].
ne of the most successful variations to address unstable con-
ergence and mode collapse are Wasserstein GANs [7] and their
mprovement, adding a gradient penalty at discriminator's up-
date [8]. While the better performance of numerous GAN variants
are strongly supported by their reported metrics and usage, they
still have their own pros and cons, and selecting one or another
could yield very divergent performance outcomes, depending on
the problem configuration, input data, etc.

Evolutionary computing seeks to solve optimization problems
taking inspiration from natural evolution [9]. The general ap-
proach of an evolutionary algorithm involves a population of
solutions (each gathering the features or parameters that alters
the output of the problem/function to optimize) with a com-
puted associated quality (a fitness value) that breed, mutates and
compete during several generations to produce solutions that
desirably converge to an optimal state (ideally, the global mini-
mum). This scheme, widely used and adapted in many fields [10],
including agriculture [11,12], could address the problem of which
GAN variant to test and select for a specific problem, as it could
be conceived as a evolutionary GAN scenario in which different
individuals compete and evolve as generations pass to reach
increasing performances. Some works have explored this pos-
sibility (or similar ones inspired in evolutionary algorithms) in
the field of adversarial networks [13–16], but Wang et al. [17]
pioneered the proposal of a complete evolutionary approach in
GAN training (previously published as a preprint in 2018). The au-
thors conceived an evolutionary scenario in which a population of
generators comply with the evolutionary operations in a dynamic
environment, that is represented by a single discriminator, that
updates based on the population's outputs.

The accurate estimation of yield components is critical in
he grape and wine industries [18,19]. The variability in cluster
ize, shape and berry number is high within the same plant or
lock [20], making difficult the application of generalization or
xtrapolating methodologies for assessing grape production in
ineyards. Therefore, the monitoring of individual grape clusters
ould help for a better characterization. While cluster-related

eatures (weight, compactness, berry size, etc.) have shown useful
or the yield assessment in grapevine [21,22], the counting of
luster components (flowers [23], berries [24] or grapes [25]) is
ne of the inputs exhibiting the highest correlation with yield
easures in production. Given this, the main obstacle for count-

ng berries is not only acquiring large amounts of images, but
lso the labeling with ground truth by manually counting grapes
or each cluster, a laborious and repetitive task. Considering the
xposed context, to the best of our knowledge, we have not found
n the literature any solution for the synthetic creation of data to
elp yield prediction in grapevines, so there is an opportunity to
xplore the use of GANs for improving deep learning models for
ield prediction, presenting an application in viticulture.
The objective of this work is the train and use of evolutionary

onditional GANs for supervised data augmentation to improve
he performance of deep learning regression models in the task
f assessing berry number per cluster in grapevine.

. Related works

Considering the demonstrated strength of GANs for image
ynthesis, these has been used recently in many agricultural
pplications [26]. Disease and pest detection is important in the
anagement of agricultural operations, especially if the it is done
2

early during the incidence (ideally, pre-symptomatic). For this,
adversarial networks have been applied for the development of
an online data augmentation platform for whitefly pests [27], in-
corporated in the management of hyperspectral images in tomato
spotted wilt [28], leaf symptoms with computer vision again
in tomato [29], or used for data augmentation for disease de-
tection in grapevine leaves [30–32]. Due to its impact in crop
growth, weed monitoring has also been attempted using GANs.
Synthetic images were used to help for the automated detection
and segmentation of weeds from robotic platforms [33–35].

Yield estimation and fruit monitoring has also benefited from
GAN image generation. Boundary Equilibrium GANs were em-
ployed as a data augmentation module in the detection of pine
cone [36], combining the Wasserstein distance with an
autoencoder-based GAN. A conditional GAN was trained for the
completion of kiwi images and 3D models from partial data, con-
figuring the adversarial networks in a image-to-image translation
problem [37]. Orchard images from proximal unmanned aerial
vehicle were used as input for a Cycle-Generative adversarial
network as part of a major process of yield estimation in almond
and apple trees [38]. Finally, automated monitoring assisted with
GANs has also been reported for grapevine yield components:
for the reconstruction of clusters due to occlusions [39] or the
generation of grapevine canopy 3D models for improved fruit
counting [40].

In precision agriculture, evolutionary computation have been
used for several applications: genetic algorithms as optimizers
for spectral band selection [41–43] or yield prediction [44,45];
particle swarm optimization for crop planning [46,46,47] or dis-
ease detection [48,49]; or ant colony optimization for wavelength
selection [50,51]. In the task of yield prediction, tools for grape
stem detection have been developed and optimized with genetic
algorithms [52], for evolutionary optimization in kiwifruit [53] or
for oil palm yield prediction [54].

3. Proposed methodology

In this section we describe the general workflow of the pro-
posed methodology for supervised data augmentation with Evo-
lutionary GANs, and its particular application in the assessment
of grape berry number in cluster images. Before the detailed
description of the work presented in this paper, an overview
of the designed pipeline is summarized in Fig. 1. This work
can be conceptually divided into two stages—supervised data
augmentation and deep learning modeling:

a. From a collection of 97 grape berry cluster images, pre-
viously labeled by manual berry counting (Section 3.1),
supervised data augmentation (Fig. 1a) involves the devel-
opment, training and inference work of a conditional GAN
with an evolutionary approach, using the original dataset
as the training data (Section 3.2). We chose the training to
be addressed as an evolutionary problem because, as Wang
et al. [17] stated, this allows to minimize the weaknesses
of different GAN objectives and optimize the networks
jointly with different metrics. Therefore, the training sta-
bility improves for better generative performance. After
Evolutionary GAN training, synthetic images are condi-
tionally generated (setting berry numbers at discretion)
for the supervised construction of an augmented dataset,
four times larger than the original one (Section 3.3). This
supervised synthetic sample generation is only possible if
the GAN training and optimization is conditioned, and this
is the reason we propose the use of conditional GANs [55].
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Fig. 1. Diagram of the methodology developed and described in this paper, conceptually divided in a. supervised data augmentation (by means of a full development
nd training of an evolutionary conditional GAN), and b. deep learning regression (training models with CNNs under the same conditions for the results to be fully
omparable).
b. In order to rigorously prove that the GAN data augmenta-
tion really improves the performance of models developed
with the generated images, regression models under the
same conditions are trained using the original and aug-
mented datasets (Fig. 1b), collecting training and validation
metrics (Section 3.4). The original model was trained with
data from the original dataset enlarged four times the orig-
inal size with traditional image transformations, while the
augmented dataset was trained with the original dataset
augmented four times with synthetic images from the best
generator after Evolutionary GAN training. Additionally, a
real application of the models is tested, so both trained
neural networks are used for the prediction of 1329 la-
beled cluster images not used in any training, reporting
performance metrics on this test dataset (Section 3.5).

The following subsections describe in detail the phases sum-
arized and displayed in Fig. 1. All models and algorithms in

his work were implemented using Python 3.9 and PyTorch 1.13,
raining on a NVIDIA GeForce RTX 4090 with 24 GB of vRAM.

.1. Data collection

As the final objective is the assessment of berry number from
luster images, a collection of approximately 100 cluster pictures
as built and labeled (‘‘original dataset’’). A hundred grape clus-
ers at pea-size (growth stage 31 according to Coombe [56]) of cv.
empranillo were collected from a vineyard located in La Rioja,
pain. Clusters were individually marked and transported to the
aboratory for their imaging and manual total berry counting,
inking each image with its corresponding number.

Images were taken using two RGB cameras: Canon EOS 5D
ark IV (full-frame CMOS sensor, 30.4 Mpx), equipped with a
anon EF 20 mm F/2.8 USM lens; and Sony α7 II digital mirrorless
amera (CCD sensor, 24.0 Mpx, 5-axis image stabilization system),
quipped with a Zeiss 24/70 mm lens with optical stabilization.
t image acquisition, the camera was placed onto a tripod and
ointing downwards to a dark paper background in which the
amples (grape clusters) were presented (constant distance be-
ween camera and target of 50 cm). Pictures were taken without
lash and with indirect artificial illumination. Fig. 2 shows some
mages from this dataset grouped by four berry number ranges
a. to d.), illustrating the different cluster shapes depending on
ize and berry total number. While the general image acquisition
arameters were maintained in terms of distances, illumina-
ion, background, etc., a complete capture homogeneity was not
3

Table 1
Statistical summary of the original dataset.
N min max mean std median

97 47 540 174 85 157

N: number of samples (images); std: standard deviation. Mean and
std values are rounded to the nearest integer. Except for N, units
are total berry number of the grape cluster imaged.

sought, as illustrated in Fig. 2 by the visual slight differences in
conditions. This was intended for the sake of reproducibility, to
make the different AI models more robust, as the only conditions
for the potential end user of the model is to make the captures
approximately at the same distance, with a dark background and
clear, indirect illumination (as in the case of the test dataset,
described in Section 3.5). All images were cropped around the
cluster with a square of constant dimensions, to preserve features
in terms of cluster and berry sizes.

The statistical description of the dataset is presented in
Table 1. The number of samples (cluster images) was reduced
from the original 100 to 97 due to inaccuracies in the counting of
three clusters, hence their images were discarded.

3.2. Evolutionary conditional GAN development and training

The evolutionary scheme described and used in this work is
based in the work by Wang et al. [17], with slight adaptations
and modifications accordingly to the problem to solve. The au-
thors proposed an evolutionary environment in which the GAN
learning occurs, transitioning from the original static adversarial
training to a dynamic stage. As in any evolutionary algorithm, a
population of individuals is generated and let evolve in a com-
petitive scenario, in which the best adapted individuals survive to
form a next generation. The cycle is then repeated, improving the
population iteratively. If we represent each individual as a GAN
generator that seek to optimize a specific function, and the dy-
namic environment as a single discriminator that improves from
the best fitted individuals, this allows to consider and evaluate
different adversarial objectives and overcome many disadvan-
tages that are commonly found in individual objectives, like mode
collapse or vanishing gradients.

In the Evolutionary GAN proposal [17], adapted here with con-
ditional GANs, the population is composed of a set of µ generators
G = {Gθ1 ,Gθ2 , . . . ,Gθµ} that are constantly evolving, evaluated

and competing in a dynamic environment, the discriminator D.
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Fig. 2. Labeled images from the original dataset (N = 97) grouped by berry number.
fter the evolutionary stage, the discriminator is updated attend-
ng to the outputs of all the individuals from the new population
synthetic images from the new generators).

At each evolutionary step, the authors from Wang et al. [17]
efined the following three operators:

1. Variation: For each individual Gθi (parent), its offspring is
created by asexual reproduction, i.e., making copies and in-
ducing genetic variability by means of different mutations.
If nm mutations are considered, then the total number of
children is µ × nm. The optimization of standard GANs is
computationally intensive, and this evolutionary adapta-
tion multiplies the updating process of the generator by
µ× nm, so the inclination is to not set too large values for
those parameters. In fact, in Wang et al. [17], most of the
models were trained with a population size µ = 1. We set
µ = 2, with nm = 4 different mutations, yielding a total of
8 children per evolutionary step.

2. Evaluation: The performance of each child is evaluated
using a fitness function F that is to be maximized. We
implement the same fitness definition, described later in
this section.

3. Selection: The new population is created by selecting the
µ children with the highest fitness score, discarding the
remaining.

In Wang et al. [17], the authors proposed three generator
raining objectives that act as mutations in the variation phase.
4

Two of them were used as base for our implementation. Given
a generator Gθ ∈ G and a discriminator D (the current envi-
ronment), the mutations used (functions to be minimized) are
defined as:

1. Modified: A modified objective proposed in the original
GAN paper to avoid discriminator saturation:

Mmodified
Gθ

= −Ez∼pz

[
log

(
D(Gθ (z))

)]
, and (1)

2. Least-Squares: Based on Least Squares GANs [4]:

Mleast
Gθ
= −Ez∼pz

[
(D(Gθ (z))− 1)2

]
. (2)

Additionally to these mutations originally proposed, two more
mutations are included in our work to further increase the search
space:

3. Wasserstein: Based on Wasserstein GANs [7]:

Mwasser
Gθ

= −Ez∼pz

[
D(Gθ (z))

]
, and (3)

4. Hinge: Based on the hinge loss from Geometric GANs [5]:

Mhinge
Gθ
= Ez∼pz

[
min

(
0, 1− D(Gθ (z))

)]
. (4)

The offspring evaluation is performed by computing a fit-
ness value F for each child. The fitness value accounts for two
desirable properties in each evolved individual (child G′ , after
θ
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utation from a parent Gθ ): the quality of the generated images
q
G′

θ
; and, to avoid extreme convergence problems (i.e., mode

ollapse), the diversity of the generated images Fd
G′

θ
. These are

efined in (5) and (6), respectively.
q
G′

θ
= Ez∼pz

[
D(G′θ (z))

]
(5)

Fd
G′

θ
=− log

∇D − Ex∼pdata

[
logD(x)

]
− Ez∼pz

[
log

(
1− D(G′θ (z))

)] (6)

Eq. (5) is a raw account of the quality of the generator (its
capacity of deceive the discriminator), while Eq. (6) considers the
gradients from optimizing D as a measure of diversity. The final
fitness value is the sum of both quality values (5) and (6), the
latter weighted with a value γ ≥ 0:

FG′
θ
= Fq

G′
θ
+ γFd

G′
θ
. (7)

After offspring evaluation, the µ children with highest fit-
ness are selected and treated as the new population for the
next evolutionary iteration. The full Evolutionary GAN training
is described in Algorithm 1. The criterion (objective function) for
updating D used is the one from WGANs with gradient penalty
calculation [8].

Algorithm 1 Training of the evolutionary conditional GAN.

Require: Initial parameters for the discriminator. w0; initial pa-
rameters for the generators in the population {θ1

0 , θ2
0 , . . . , θ

µ

0 }

equire: The batch size m; the number of updates per epoch to
apply to the discriminator per epoch k; the population size µ;
the number of mutations nm; the weight in the fitness function
γ ; hyperparameters for the Adam optimization α, β1, β2; the
gradient penalty coefficient λ.
for number of epochs do

for c = 0, . . . , µ do
for l = 0, . . . , nm do

Sample a batch of
{
z(i)

}m
i=1 ∼ pz

gθc,l ← ∇θ jMl
Gc (z

(i), y(i))
θ
c,l
child ← Adam(gθc,l, θ

c, α, β1, β2)
Fc,l ← Fq

c,l + γFd
c,l

end for
end for
{θ1, θ2, . . . , θµ

} ← the µ children with the highest F
for each batch

{
x(i), y(i)

}m
i=1 from the training data do

for d = 0, . . . , k do
Sample a batch of

{
z(i)

}m/µ

i=1 ∼ pz

gw ← ∇w

[
1
m

∑m
i=1 Dw(x(i), y(i))−

1
m

∑µ

j=1
∑m/µ

i=1 Dw(Gj(z(i), y(i)), y(i))+

λ
(∇x(i)Dw(x(i), y(i))


2 − 1

)2]
w← Adam(gw, w, α, β1, β2)

end for
end for

end for

The working image size for all the models described in this
aper is 128 × 128 pixels, so both generator and discrimina-
or networks were designed accordingly to that size. Fig. 3 dis-
lays both architectures. No pooling operations were included,
o all dimension alterations are obtained via appropriate kernel
ize, striding and padding values in convolutional filters (down-
ampling with two-dimensional convolutions in the generator;
psampling with two-dimensional transposed convolutions). As
onditional image generation is required, the targeted value—the
5

Fig. 3. Architectures of generator (a.) and discriminator (b.) of the conditional
GAN. The convention used for data structures is that the first dimension refers to
the channels. Conv2D and ConvTrans2D refer to 2D convolution and transposed
convolution operations, respectively. Except when indicated, all convolutions
used a kernel size of 4 × 4, a stride value of 2 and a padding of 1. All leaky
ReLU modules had a slope value α of 0.2. The last sigmoid activation function
from the discriminator was only used when corresponding, depending on the
objective function used.

number of berries—is aggregated to the batch before forwarding
it into the network. In the case of the generator, the condition is
appended to the latent vector as a last value. For the discrimina-
tor, the value is included as a fourth image channel, repeated in
all the positions. As mentioned, the value of the condition refers
to the number of berries in the image (to be generated by G or to
e evaluated by D), but these ranged within values that are too
arge for neural networks (Table 1). For this reason, all conditions
orwarded to any GAN network need to be rescaled, and in our
ork we computed the new scale using 30 and 600 berries as
inimum and maximum values.
The training of the evolutionary conditional GAN was capped

t 2000 epochs, with continuous monitoring of generated images
ia fixed noise and conditions, and storing checkpoints every 100
terations. The µ value (population size) was set to 2; the weight
alue γ in fitness calculation was set to 0.5; the gradient penalty
agnitude λ was set to 10; and the number of discriminator
pdates per epoch k was set to 3. Adam optimization was set up
or both networks, with a learning rate of 0.0002, and β1 and β2
alues of 0 and 0.9, respectively. A summary of the Evolutionary
AN parameters used is presented in Table 2, compared to their
efault values from the original proposal [17]. In order to enrich
he original dataset for better training, several random image
ransformations were applied online to the images for every batch
terated:
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Fig. 4. Example of the different common transformation techniques applied for an original image from the dataset (a). Transformations (b) randomly alter several
image features: rotations by multiples of 90, color jitter, affine transformations, and vertical and horizontal flipping.
Table 2
Summary of the hyperparameters of Evolutionary GANs training originally
proposed versus values used in this work.
Parameter Default value

from Wang
et al. [17]

Value used in
this work

Learning rate α 0.0002 0.0004
Adam’s β1 0.5 0
Adam’s β2 0.99 0.9
Discriminator updating steps k 2 1
Number of parents np 1 2
Number of mutations nm 3 4
Fitness weight γ 0.5 0.5

• Rotation by multiples of 90.
• Color jitter, affecting brightness, contrast, saturation and

hue.
• Affine transformations, with translation not greater than 5%

for both dimensions and scaling not larger than 1.2 the
original size.
• Vertical and horizontal flipping.

Examples of these random transformations are displayed in
ig. 4. With this, the total size of the original dataset for training
as increase by a factor of 10.

.3. Supervised data augmentation

After the training of the Evolutionary GAN, the images gen-
rated at each epoch for monitoring were visually analyzed. The
oal was to pick the generator from the epoch with the images
ost appealing compared to the real ones, in terms of realism,
efinition and cluster shape and size (presumably, the latest
pochs).
Once the generator was selected, three batches of 100 images

ach were created conditionally, setting the number of berries
qually spaced from 250 to 400 in the first batch, from 50 to
00 berries in the second batch, and from 350 to 500 berries
6

in the last batch. The 97 images from the original dataset were
then augmented with the new 300 synthetic samples, having then
an augmented dataset with a total of 397 grape cluster labeled
images.

3.4. Deep learning regression modeling

To comparatively test the performance of the augmented
dataset, an unique CNN regression architecture was designed
to be trained separately with the two datasets (original and
augmented). The neural network was configured to receive a
3 channel, 128 × 128 image and forward it to a block with
eight two-dimensional convolutional filters (kernel size of 3× 3,
striding and padding values of 1), activated with ReLU (rectified
linear unit), downsized using two-dimensional 2×2 max pooling,
and regularized with a dropout layer (p = 0.6). The output of this
block is then flattened to a 128-units fully connected layer, with
ReLU as activation function, and after connected to a single output
neuron having no activation function, to map a continuous value
representing the berry number from the input image.

Training was set up using Adam algorithm for optimization,
with learning rate of 0.003, β1 and β2 values of 0.9 and 0.999,
respectively, and the mean squared error (MSE) as loss func-
tion. Training was limited to 1000 epochs. As previously stated,
two models were trained with this architecture and configura-
tion: original model (using the original dataset) and augmented
model (using the augmented dataset). Still, using the data as-is
for the training would not have been equitable, as the origi-
nal dataset comprises 97 labeled images versus the augmented
dataset, with 397 labeled images. For this reason, training the
original model involved enlarging the original dataset up to four
times its original size, using traditional image transformations
similar to the ones used during the Evolutionary GAN training
(Fig. 4) and described in Section 3.2, giving a total of 388 im-
ages. To objectively determine that the original model—with 388
samples—outperforms a model with the source dataset, a baseline
model was trained under the same conditions, but using only the

97 images, with no augmentation.
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Fig. 5. Images from the test dataset (N = 1329), composed of cluster images taken under conditions similar but not exact to those from the original dataset (Fig. 2).
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3.5. Validation and testing

The training of the regression models – original and aug-
mented – was carried out using the 80% of their corresponding
dataset, while the remaining 20% was used for validation (hold-
out validation). The division of these subsets was random, just
ensuring that the same data distribution was present in each one.
At each training epoch, the loss metric was registered for each
subset, to supervise the performance, convergence and overfitting
of the model. Specifically, the root-mean-square error (RMSE)
was computed as performance metric (RMSE =

√
loss).

To further verify the supposed added quality of the synthetic
mages in the training of the augmented model, a fully exter-
al dataset was prepared. Over 1300 grape cluster images were
cquired under similar conditions, although not identical, than
hose used for the training of the neural networks. Clusters were
cquired and imaged not only from grapevine of Tempranillo
ariety, but others too, collected from different plots in La Rioja,
pain. The considerably high number of images in this test dataset
ade the manual counting virtually impracticable, so the labeling
f reference values (total number of berries of each image) was
arried out automatically using an algorithm based on vitisBerry
rom the Televitis Research Group [57]. This labeling was super-
ised and adjusted dynamically when required depending on the
onditions present on these images (color adjusting, thresholding,
tc.).
The statistical description of the test dataset is shown in

able 3. It is necessary to highlight the fact that, while light
nd framing conditions of these images were not very different
rom the images used for training, many visible artifacts, such as
abels, stickers, dirt, water spots, and others, were present here,
ut not found in the images from the original dataset, as can be
een in Fig. 5 (compared to Fig. 2). Additionally, no cropping was

pplied, so small deformations were implied when the images a

7

Table 3
Statistical summary of the test dataset.
N min max mean std median

1329 83 420 180 61 169

N: number of samples (images); std: standard deviation. Mean and
std values are rounded to the nearest integer. Except for N, units
are total berry number of the grape cluster imaged.

were reduced to the models’ required input dimensions, 128 ×
128 pixels.

4. Results

After approximately 30 h of training of the Evolutionary GAN,
with µ = 2 and nm = 4, the metrics history of the training is
displayed in Fig. 6, reporting the evolution of discriminator's loss
and the fitness of the best generator at each epoch. After a slight
divergence during the first hundred iterations, the behavior of the
training followed an expected evolution.

The discriminator network D is considered a dynamic envi-
ronment in which the population of generators evolve, and its
loss (continuous blue line, Fig. 6) is decreasing asymptotically as
it gets better at discerning synthetic from real images. By the
nature of GANs training (and, by extension, Evolutionary GANs),
the discriminator's updates feed back the training of the genera-
ors, and they constantly improve the quality of their generated
mages, attending to the value of the best fitness (dotted orange
ine, Fig. 6). The training starts to balance a few epochs after the
000th epoch mark, when a convergence stage is reached, as no
ignificant improvement occurs from further training.
After considering these metrics along all the training itera-

ions, images from generators around epoch 1000 were analyzed,
nd we concluded that the images from epochs close to 800 were
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Fig. 6. Evolutionary conditional GAN training plot. The continuous, descending
blue line represent the loss of the discriminator network D. The dotted,
ascending orange line represents the fitness from the best individual (generator)
at each epoch. Fitness values were shifted over 0 for better visual comparative
with D loss.

the most visually appealing and convincing. Sample synthetic
images conditioned by berry number from this generator are
shown in Fig. 7 (a. to d., in groups similar to those from Fig. 2).
The generated images presented in all cases grapes grouped in
ways consistent with real grape clusters, also in terms of color
and texture, and with different shapes, always dependent on the
condition added to the network's input. The selected generator
was used for the supervised data augmentation step described
in Section 3.3, thus building the augmented dataset with almost
400 images, 75% of them conditionally created by the selected
generator.

The training of the regression models (original and augmented)
required less than an hour to complete (1000 epochs). The train-
ing and validation metrics (RMSE) along all the epochs are re-
ported in Fig. 8. For the original model—trained with almost
400 images: 97 real images augmented four times with image
transformations—the losses (Fig. 8a) exhibited an expected sud-
den drop during a few epochs at first (as gradients start following
a convergent path), and then started a finer adjusting to the train-
ing data, with a small divergence in the validation curve prior
to epoch 200, finishing with a clear stabilization in both subsets
(validation RMSE around 65 berries). In the case of the augmented
model—trained with almost 400 images: 97 real images and the
remaining synthetically created by the selected generator—the
same loss descending occurs during the first epochs (Fig. 8b).
The training convergence in this case needed for a few more
epochs than with the original model, but a higher stability was
finally reached. The descending behavior was very similar in
both training and validation losses (at different scales), the latest
laying slightly over an error value of 40 berries. In all cases, both
models outperformed the best metrics obtained for the training
of the baseline model (using only the 97 labeled images with
no augmentation), which obtained RMSE values of 78.810 for
training and 100.25 for validation.

The training of both original and augmented models was pro-
grammed so that the network from the epoch with the lower
validation error (respectively) was stored as the definitive trained
regression network—attending to the validation curves in Fig. 8,
in the latest epochs. The metrics of these models are presented

in Table 4. These models were used for the prediction of the
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Table 4
Metrics for the deep learning modeling and testing on external dataset. RMSE:
Root mean squared error (lower is better).
Model Training Validation Test

RMSE RMSE RMSE R2

Original 9.781 64.739 56.515 0.65
Augmented 7.674 40.169 38.774 0.75

images from the test dataset (N = 1329, Section 3.5), that in any
case were not used for the training of any model. The predicted
values from both models were related to the actual grape cluster
berry number of the images and presented in Fig. 9, a. original
model, and b. augmented model. The determination coefficient
R2 was computed, along with the RMSE, given in berry number
per cluster.

The original model obtained an R2 of 0.65 versus 0.75 from
he augmented model, evidenced by a higher dispersion of the
oints from their corresponding regression lines (higher in the
riginal model, Fig. 9a, especially when handling cluster images
ith a high number of berries). The higher precision found in the
ugmented model is highlighted by the tighter fit of the points
o the regression line in Fig. 9b, hence the increase of R2 in 0.10
points. In terms of accuracy (average prediction closer to real
values), again is the augmented model better than the original
one, with an rounded error value of 39 versus 57 berries.

5. Discussion

The results observed from the training of the evolutionary
conditional GAN evidence that—from a quantitative point of view
(Fig. 6)—a numerical stability was achieved by the networks (dis-
criminator and best generator at each epoch) and not at the initial
iterations, meaning that an successful adversarial training was
carried out, and the generators from the best epochs were sup-
posedly able to produce realistic images able to compete against
the train data. Low training stability and early convergence (i.e.,
severe imbalance towards one of the two networks that pre-
vents further learning) are common problems when working with
GANs, and the evolutionary approach proposed by Wang et al.
[17] and adapted here did result in a more stable performance
and, thus, actual learning from both networks. Evolutionary GANs
are helpful when many training objectives are available, but
testing all of them could involve the repetitive training of several
models, considering the great computing requirements that GANs
demand in terms of time and hardware.

From a qualitative point of view, the conditionally generated
images (Fig. 7) were consistent to those from the training in
terms of cluster shape, texture, surrounds, shadows, among other
features. While the visual similarity of the synthetic images was
significant, it was not completely consistent with the training
data. A cause for this could be the working image dimensions of
128×128, that by nature diminish the very fine details that could
expose the fake source of the image—like, for example, grape
stems, Fig. 2. Other possible causes may be the reduced size of
the original dataset—around a hundred images—and the relatively
low complexity of the adversarial network architectures (Fig. 3),
that were designed accordingly to the constrained variability
from the images taken under laboratory conditions. More com-
plex architectures may yield better quality images to the human
eye, like attention mechanisms [58] or residual blocks [8]. Still,
the objective of this work (i.e., the improvement of deep learning
models for assessing berry number) was reached, meaning that
the developed regression networks did not really benefit from,
and thus did not attend to, some fine details from the images. The

general pipeline illustrated in Fig. 1 can certainly be generalized
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Fig. 7. Images created by the best generator. Each image was generated conditioned to a berry number within the ranges stated from a. to d. These ranges were
elected so that image groups (grape clusters) can be compared to those from Fig. 2.
Fig. 8. Training and validation metrics (RMSE=
√
loss, given in number of berries) from the training of the original (a.) and augmented (b.) models.
or similar agricultural problems, but in most cases different con-
itions need to be considered. For example, when dealing with
mages taken under natural conditions, the generative networks
sed in our experiments (Fig. 3) is likely to be inadequate, and
9

more sophisticated architectures would probably be necessary.
This is because natural conditions introduce a high level of vari-
ability and complexity, including changes in lighting, background,
and grape berry appearance. As a result, the GAN must be able
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Fig. 9. Correlation plots between the actual values from the test dataset (number of berries in images) and the values predicted by a. the original and b. the
augmented models. RMSE values are given in berry number. The continuous, black line represents the regression line within each plot.
to recognize and model these variations to accurately assess
grape berry numbers. Additionally, the GAN should be able to
learn from a diverse set of natural images to ensure that it can
generalize to new and unseen scenarios, implying a considerable
larger number of base images.

Regarding data augmentation techniques, it is worth discussing
alternatives to GAN image generation, like AutoAugment [59],
an automated approach for data augmentation with reinforce-
ment to search and optimize augmentation policies based on
traditional image transforms. Compared to the GAN development
proposed in this work, AutoAugment has the advantage of au-
tomatically search for augmentation policies that are tailored to
specific datasets and tasks. This eliminates the need for manual
experimentation and tuning of hyperparameters, a hard task in
GAN training. Nevertheless, AutoAugment is limited to prede-
fined transformations and may not capture complex patterns
or generate entirely new data instances like GANs. Additionally,
AutoAugment alone cannot provide for supervised augmentation,
i.e., allowing to condition the image generation, like conditional
GANs in this work do. As there are no many reported applica-
tions of AutoAugment in agriculture [60], the line is open and
interesting for further research and comparison.

The behavior of the training and validation curves from both
models (Fig. 8a and b) demonstrates that the selected CNN archi-
tecture for the regression model did not need for further epochs,
as a stability phase was reached in both models, approximately
at the same number of iterations. While the final training error
was virtually the same in both models and very proximal to 0,
meaning that the network captured adequately all the features
and diversity of the training data, the validation error of the aug-
mented model was comparatively lower than the original one by
around 20 berries, demonstrating that the synthetic images im-
proved the generalization capability of the model. It is important
to highlight the fact that both regression models were trained
with the same number of samples (the original model with basic
data augmentation from image transforms— Section 3.4—versus
data augmentation from GAN's images), so the improvement in
the regression task was not a matter of number of samples for
training, and can be attributed to the quality of the labeled images
conditionally generated after the evolutionary training of the
GAN. This was also consistent to the results obtained from the test

dataset (Fig. 9), in which the improvement in error was almost

10
of 20 berries in favor of the augmented model, again supporting
the strength of GANs for useful data augmentation. Moreover,
the results from Fig. 9b can also be evaluated in absolute and
isolated terms. The augmented model, from an original amount
of 97 labeled images, was able to predict a collection of images
more than one order of magnitude larger (1329 images) with high
correlation (R2

= 0.75) and low error compared to the standard
deviation of the dataset (Table 3). This was possible even when
the test images were considerably adulterated with unmodified
white labels present in the images, or with the common presence
of dirt and water spots that were not present in the train dataset.
This is another proof of the good capability of CNNs for the
automated extraction of useful features, previous modeling their
relation to the target variable.

The results obtained in this paper open new possibilities of
designing similar and adapted approaches that are worth re-
searching. In the case of yield assessment in grapevines, it would
be beneficial working with images having different indoor con-
ditions, other grape phenological stages, etc. Grape variety is
also an interesting factor to consider. Although the data used
for training the generative networks only came from one grape
variety, the proposed pipeline is likely to be applicable to other
grape varieties or datasets with higher variability. The training of
the GAN involved images from a single variety, so the particular
generator obtained might arguably be considered as specialized
on one variety. Still, the grape phenological stage used in our
experiments (so called ‘‘pea-sized berries’’) makes easier for the
images to be useful for the prediction of bunches from different
varieties, but the same bunch state. The improved performance of
CNN regression models on the augmented images generated by
the GAN supports the potential generalizability of the proposed
method, specially considering that the external test dataset in-
cluded more grape varieties or different conditions than the ones
used in training. However, higher generation/prediction quality
might be expected from dataset with a larger range of variability,
included several varieties. Also, while we recognize this work as
a first step on the use of GAN-based data augmentation in grape
yield prediction, we acknowledge that higher performance levels
of deep learning models could be achieved by comparing different
architectures other than the CNN used here. For this reason,
future work can explore the impact of other deep learning mod-

els, such as different CNN architectures or other state-of-the-art
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echanisms like Vision Transformers. Finally, data augmentation
ith Evolutionary GANs could be very useful for other important
spects in viticulture, like disease detection and assessment, or
n-field grapevine monitoring.

. Conclusion

Evolutionary conditional generative adversarial networks were
ble to produce synthetic images that improved considerably the
erformance of the augmented regression model when compared
nder the same conditions to the original model, both based on
onvolutional networks. The development presented in this paper
emonstrated that the evolutionary training of GANs resulted in a
table behavior that produced satisfactory images, qualitative and
uantitatively, thus benefiting the mechanisms of evolutionary
omputing and reducing the need for separately testing different
AN training objectives. The augmented model by itself was able
o successfully assess the berry number per cluster in an external
ataset ten times larger than the base dataset, with images
ontaining noise visible elements not present during training.
his demonstrates the suitability of generative models for the
ssessment of berry number in viticulture with deep learning.
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