Structural and functional brain markers of cognitive impairment in healthcare workers following mild SARS-CoV-2 infection during the original stream

  1. González-Rosa, Javier J 13
  2. Gómez-Molinero, María P 4
  3. Lozano-Soto, Elena 13
  4. Fernández-Rosa, Silvia P 4
  5. Campos-Silvo, Marina 1
  6. García-Rodríguez, María Paula 4
  7. Cano-Cano, Fátima 1
  8. Sanmartino, Florencia 13
  9. Rashid-López, Raúl 15
  10. Macías-García, Paloma 13
  11. Gómez-Ramírez, Jaime D 1
  12. Espinosa-Rosso, Raúl 12
  13. Paz-Espósito, José 6
  14. Gómez-Molinero, Rocío 3
  15. Forero, Lucía 15
  16. Cruz-Gómez, Álvaro J 13
  1. 1 Institute of Biomedical Research and Innovation of Cadiz (INiBICA) , 11009 Cadiz ,
  2. 2 Neurology Department, Jerez de la Frontera University Hospital , 11407 Jerez de la Frontera ,
  3. 3 Psychology Department, University of Cadiz , 11510 Puerto Real ,
  4. 4 Radiodiagnostic Department, Jerez de la Frontera University Hospital , 11407 Jerez de la Frontera ,
  5. 5 Neurology Department, Puerta del Mar University Hospital , 11009 Cadiz ,
  6. 6 Radiodiagnostic Department, Puerta del Mar University Hospital , 11009 Cadiz ,
Journal:
Brain Communications

ISSN: 2632-1297

Year of publication: 2024

Volume: 6

Issue: 5

Type: Article

DOI: 10.1093/BRAINCOMMS/FCAE340 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Brain Communications

Sustainable development goals

Abstract

Severe acute respiratory syndrome coronavirus 2 infection often involves the nervous system, leading to cognitive dysfunctions, fatigue and many other neurological signs that are becoming increasingly recognized. Despite mild forms of the disease accounting for most cases worldwide, research on the pathophysiology driving mild coronavirus disease 2019 (COVID-19) has received little attention. In this respect, recent evidence has pointed out that around 30–40% of non-critical, mild-to-moderate severity COVID-19 survivors may display cognitive disturbances several months post-illness. Hence, the impact of COVID-19 on the brain structure and function, through potential neuropathological mechanisms underpinning cognitive alterations in post-mild COVID-19 infections, remains largely unexplored. This retrospective multicentre observational cohort study, entirely based on a healthcare worker sample (n = 65; 55% females, aged 21–61), investigated the cognitive status and the structural and functional brain integrity among non-hospitalized individuals who developed mild COVID-19 symptoms during the occurrence of severe acute respiratory syndrome coronavirus 2 variants Alpha to Delta, compared with healthy controls tested before the pandemic onset. All evaluations were performed at an average of 9-month follow-up post-infection period. Participants completed a comprehensive neuropsychological assessment and structural and functional MRI exams. Radiological inspection sought to detect the presence of white matter hyperintensities on axial fluid-attenuated inversion recovery images. Global and regional grey matter integrity assessment, analysing changes in grey matter volumes and cortical thinning, and functional connectivity alterations of resting-state brain networks were also conducted. Regression analyses tested the relationships between the presence of specific cognitive impairments and potential structural and functional brain findings. Our results revealed that clinical, cognitive screening and neuropsychological examinations were average between both groups, except for specific impairments related to executive functions in the mild COVID-19. Compared to healthy controls, mild COVID-19 subjects exhibited increased juxtacortical white matter hyperintensities, thalamic and occipital volume loss and diminished resting-state functional connectivity involving the left precuneus and cuneus in default-mode network and affecting the right angular gyrus and left precuneus in the dorsal attentional network. Reduced thalamic volume was the only variable selected in the final model explaining the observed executive function impairment in mild COVID-19. The presence of cognitive, structural and functional brain abnormalities over time suggests that the action of widespread neurovascular and inflammatory phenomena on the nervous system might also occur in mild forms following COVID-19 infection rather than permanent brain damage linked to the direct or indirect action of the virus. Our findings emphasize the need to pay attention to the long-term brain-related consequences of mild COVID-19 infections during the original stream.

Funding information

Bibliographic References

  • World Health Organization
  • Khatoon, (2020), J Neurovirol, 26, pp. 619, 10.1007/s13365-020-00895-4
  • Leonardi, (2020), J Neurol, 267, pp. 1573, 10.1007/s00415-020-09896-z
  • Spudich, (2022), Science (1979)., 375, pp. 267
  • Franke, (2022), Neurol Res Pract, 4, pp. 28, 10.1186/s42466-022-00191-y
  • Callard, (2021), Soc Sci Med, 268, pp. 113426, 10.1016/j.socscimed.2020.113426
  • Lyra e Silva, (2022), Neuropharmacology, 209, pp. 109023, 10.1016/j.neuropharm.2022.109023
  • Ceban, (2022), Brain Behav Immun, 101, pp. 93, 10.1016/j.bbi.2021.12.020
  • Renaud-Charest, (2021), J Psychiatr Res, 144, pp. 129, 10.1016/j.jpsychires.2021.09.054
  • Bertuccelli, (2022), Cortex, 154, pp. 212, 10.1016/j.cortex.2022.06.002
  • Wulf Hanson, (2022), JAMA, 328, pp. 1604, 10.1001/jama.2022.18931
  • Kanberg, (2020), Neurology, 95, pp. e1754, 10.1212/WNL.0000000000010111
  • Espíndola, (2021), Ann Neurol, 89, pp. 1041, 10.1002/ana.26041
  • Virhammar, (2021), Eur J Neurol, 28, pp. 3324, 10.1111/ene.14703
  • Díez-Cirarda, (2023), Brain, 146, pp. 2142, 10.1093/brain/awac384
  • Mao, (2020), JAMA Neurol, 77, pp. 683, 10.1001/jamaneurol.2020.1127
  • Rahman, (2020), SAGE Open Med, 8, pp. 205031212095792, 10.1177/2050312120957925
  • Gholami, (2021), Int J Infect Dis, 104, pp. 335, 10.1016/j.ijid.2021.01.013
  • Sahu, (2020), Am J Emerg Med, 38, pp. 1727, 10.1016/j.ajem.2020.05.113
  • Shukla, (2023), Lancet Reg Heal - Southeast Asia, 10, pp. 100129, 10.1016/j.lansea.2022.100129
  • Sun, (2021), Front Psychol, 12, pp. 626547, 10.3389/fpsyg.2021.626547
  • Omar, (2022), Middle East Curr Psychiatry, 29, pp. 79, 10.1186/s43045-022-00245-6
  • Fouad, (2023), Infection, 51, pp. 839, 10.1007/s15010-022-01942-4
  • Nehme, (2023), Sci Rep, 13, pp. 10759, 10.1038/s41598-023-37568-1
  • Manca, (2021), Front Aging Neurosci, 13, pp. 646908, 10.3389/fnagi.2021.646908
  • Sarvandani, (2023), Basic Clin Neurosci J, 14, pp. 753, 10.32598/bcn.2021.1425.4
  • Douaud, (2022), Nature, 604, pp. 697, 10.1038/s41586-022-04569-5
  • Hart, (2022), Lancet Infect Dis, 22, pp. 603, 10.1016/S1473-3099(22)00001-9
  • Folstein, (1975), J Psychiatr Res, 12, pp. 189, 10.1016/0022-3956(75)90026-6
  • Smith, (1982), Symbol digit modalities test (SDMT). manual (revised)
  • Gronwall, (1977), Percept Mot Skills, 44, pp. 367, 10.2466/pms.1977.44.2.367
  • Buschke, (1974), Neurology, 24, pp. 1019, 10.1212/WNL.24.11.1019
  • Rao, (1990), A manual for the Brief Repeatable Battery of Neuropsychological Tests in multiple sclerosis
  • Benedet, (2013), Evaluación de la fluidez mental controlada
  • Wechsler, (2001), Wechsler adult intelligence scale III
  • Wideman, (2013), In: Encyclopedia of behavioral medicine, pp. 178, 10.1007/978-1-4419-1005-9_441
  • Spielberger, (1983), Manual for the state-trait anxiety inventory
  • Krupp, (1989), Arch Neurol, 46, pp. 1121, 10.1001/archneur.1989.00520460115022
  • Saxena, (2001), Qual Life Res, 10, pp. 711, 10.1023/A:1013867826835
  • Fazekas, (1987), Am J Roentgenol, 149, pp. 351, 10.2214/ajr.149.2.351
  • Brant-Zawadzki, (1985), AJNR Am J Neuroradiol, 6, pp. 675
  • Gaser, 10.1093/gigascience/giae049
  • Rolls, (2020), Neuroimage, 206, pp. 116189, 10.1016/j.neuroimage.2019.116189
  • Sanfilipo, (2005), Neuroimage, 26, pp. 1068, 10.1016/j.neuroimage.2005.03.008
  • Dahnke, (2013), Neuroimage, 65, pp. 336, 10.1016/j.neuroimage.2012.09.050
  • Desikan, (2006), Neuroimage, 31, pp. 968, 10.1016/j.neuroimage.2006.01.021
  • Yan, (2016), Neuroinformatics, 14, pp. 339, 10.1007/s12021-016-9299-4
  • Calhoun, (2001), Hum Brain Mapp, 14, pp. 140, 10.1002/hbm.1048
  • Varela-López, (2022), Neurobiol Aging, 117, pp. 151, 10.1016/j.neurobiolaging.2022.05.012
  • Schinka, (2010), Am J Geriatr Psychiatry, 18, pp. 684, 10.1097/JGP.0b013e3181e56d5a
  • Jak, (2016), J Int Neuropsychol Soc, 22, pp. 937, 10.1017/S1355617716000199
  • Lozano-Soto, (2023), J Clin Med, 12, pp. 523, 10.3390/jcm12020523
  • Woo, (2020), Brain Commun, 2, pp. fcaa205, 10.1093/braincomms/fcaa205
  • Becker, (2021), JAMA Netw Open, 4, pp. e2130645, 10.1001/jamanetworkopen.2021.30645
  • Hampshire, (2021), EClinicalMedicine, 39, pp. 101044, 10.1016/j.eclinm.2021.101044
  • Hadad, (2022), J Neurovirol, 28, pp. 430, 10.1007/s13365-022-01079-y
  • Albu, (2021), NeuroRehabilitation, 48, pp. 469, 10.3233/NRE-210025
  • Henneghan, (2022), Front Psychol, 13, pp. 770459, 10.3389/fpsyg.2022.770459
  • Almeria, (2020), Brain, Behav Immun - Heal, 9, pp. 100163, 10.1016/j.bbih.2020.100163
  • Voruz, (2022), Clin Transl Neurosci, 6, pp. 9, 10.3390/ctn6020009
  • Amalakanti, (2021), VirusDisease, 32, pp. 146, 10.1007/s13337-021-00663-w
  • Hartung, (2022), eClinicalMedicine, 53, pp. 101651, 10.1016/j.eclinm.2022.101651
  • García-Sánchez, (2022), Brain Behav, 12, pp. e2508, 10.1002/brb3.2508
  • Duong, (2021), Can Med Assoc J, 193, pp. E1360, 10.1503/cmaj.1095958
  • Del Brutto, (2021), Eur J Neurol, 28, pp. 3245, 10.1111/ene.14775
  • Biagianti, (2022), Front Aging Neurosci, 14, pp. 909661, 10.3389/fnagi.2022.909661
  • Mattioli, (2021), J Neurol, 268, pp. 4422, 10.1007/s00415-021-10579-6
  • Li, (2023), BMC Infect Dis, 23, pp. 521, 10.1186/s12879-023-08331-8
  • Churchill, (2023), Front Neurol, 14, pp. 1136408, 10.3389/fneur.2023.1136408
  • Seo, (2012), Neurobiol Aging, 33, pp. 1156, 10.1016/j.neurobiolaging.2010.12.003
  • Wojciulik, (1999), Neuron, 23, pp. 747, 10.1016/S0896-6273(01)80033-7
  • Vanni, (2001), Proc Natl Acad Sci U S A., 98, pp. 2776, 10.1073/pnas.041600898
  • Margulies, (2009), Proc Natl Acad Sci U S A., 106, pp. 20069, 10.1073/pnas.0905314106
  • Utevsky, (2014), J Neurosci, 34, pp. 932, 10.1523/JNEUROSCI.4227-13.2014
  • Benedetti, (2021), Brain, Behav Immun - Heal, 18, pp. 100387, 10.1016/j.bbih.2021.100387
  • Kafali, (2023), Psychiatry Res Neuroimaging, 336, pp. 111746, 10.1016/j.pscychresns.2023.111746
  • Guedj, (2021), Eur J Nucl Med Mol Imaging, 48, pp. 2823, 10.1007/s00259-021-05215-4
  • Sherman, (2017), Comprehensive physiology, pp. 713, 10.1002/cphy.c160032
  • Ogier, (2020), Brain, Behav Immun - Heal, 5, pp. 100081, 10.1016/j.bbih.2020.100081
  • Heine, (2023), eClinicalMedicine, 58, pp. 101874, 10.1016/j.eclinm.2023.101874
  • Huang, (2022), Brain, 145, pp. 1830, 10.1093/brain/awab435
  • Chougar, (2020), Radiology, 297, pp. E313, 10.1148/radiol.2020202422
  • Kremer, (2020), Radiology, 297, pp. E242, 10.1148/radiol.2020202222
  • Boito, (2023), Brain Commun, 5, pp. fcad284, 10.1093/braincomms/fcad284
  • Fernández-Castañeda, (2022), Cell, 185, pp. 2452, 10.1016/j.cell.2022.06.008
  • Lemprière, (2022), Nat Rev Neurol, 18, pp. 453, 10.1038/s41582-022-00694-x
  • Monje, (2022), Neuron, 110, pp. 3484, 10.1016/j.neuron.2022.10.006
  • Kumar, (2023), Neurosci Biobehav Rev, 149, pp. 105150, 10.1016/j.neubiorev.2023.105150