Monitorización de cambios geomorfológicos y transporte de carga de fondo durante flujos anuales en la rambla de Cervera (Castellón)

  1. Benito, Gerardo 1
  2. Rabanaque, Maria Pilar 1
  3. Sanchis-Ibor, Carles 2
  4. Castillo, Olegario 3
  5. Vázquez-Tarrío, Daniel 4
  6. Calle, Mikel 5
  7. Martínez-Fernández, Vanesa 6
  8. Sánchez-Moya, Yolanda 5
  1. 1 <p>Museo Nacional de Ciencias Naturales (MNCN) - CSIC</p>
  2. 2 <p>Centro Valenciano de Estudios del Riego, Universitat Polit&egrave;cnica de Val&egrave;ncia</p>
  3. 3 <p>Universidad de C&aacute;diz</p>
  4. 4 <p>Instituto Geol&oacute;gico y Minero de Espa&ntilde;a (IGME), CSIC</p>
  5. 5 <p>Universidad Complutense de Madrid</p>
  6. 6 <p>Universidad Polit&eacute;cnica de Madrid</p>
Journal:
Cuadernos de geografía

ISSN: 0210-086X 2695-7965

Year of publication: 2024

Issue: 112

Pages: 195-229

Type: Article

DOI: 10.7203/CGUV.112.29261 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Cuadernos de geografía

Abstract

Most Mediterranean ephemeral rivers (ramblas) show a significant state of degradation after decades of severe human impacts (e. g. gravel extraction). The seasonal flow in these ramblas has contributed to their social and legislative abandonment. Our colleague Francesca Segura has been a reference in the study of the evolution and morphodynamic processes of the ramblas and in the struggle for their conservation. In this work of the EPHIDREAMS project, of which she is part, we describe the preliminary results of the monitoring of two reaches of the Rambla de Cervera (Castellón) during temporary flows (January and April 2020). Pressure sensors have been used to record the depth, impact sensors have served to determine the intensity of bed load transport, and photogrammetry has been applied to obtain high-resolution DTMs. From these techniques diachronic geomorphological maps, two-dimensional hydraulic models and the quantification of sediment transport rates have been obtained. In the upper reach (Enroig), both events recorded a peak flow of 50 m3/s, showing how its braided channel and the high availability of sediment allow a greater efficiency in the construction of forms (incipient lateral and medial bars) and the transport of gravels. In the middle reach (Cervera del Maestre), with a semi-confined valley with a narrow single channel, peaks of 100 m3/s (January) and 120 m3/s (April) were recorded. In this reach, the conditions of higher energy and regime close to critical flow prevented the lateral accumulation of bars, dominating the deposition of lobes during the recession stage of the hydrograph. Although the volume of sediment transported is modest (660 m3 at Enroig and 800 m3 at Cervera), it is evident that these frequent events are critical to maintain morphological activity and sediment connectivity, preventing channel narrowing due to vegetation growth.

Bibliographic References

  • Bagnold, R. A., (1977). Bed load transport by natural rivers. Water Resour. Res., 13(2), 303-312, DOI: 10.1029/WR013i002p00303
  • Bladé, E., Cea L., Corestein G., Escolano E., Puertas J., Vázquez-Cendón E., Dolz J., & Coll A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30, 1-10. DOI: 10.1016/j.rimni.2012.07.004
  • Calle, M. (2019). Morphosedimentary dynamics of ephemeral rivers affected by gravel mining: GIS mapping and geomorphic change detection. Universidad Complutense de Madrid, 20 June.
  • Calle, M., Alho, P., & Benito, G. (2017). Channel dynamics and geomorphic resilience in an ephemeral Mediterranean river affected by gravel mining. Geomorphology, 285, 333-346. DOI: 10.1016/j. geomorph.2017.02.026
  • Calle M., Alho P., & Benito G. (2018). Monitoring ephemeral river changes during floods with SfM photogrammetry. Journal of Iberian Geology, 44, 355-373. DOI: 10.1007/s41513-018-0078-y
  • Calle M., Calle J., Alho P., & Benito G. (2020). Inferring sediment transfers and functional connectivity of rivers from repeat topographic surveys. Earth Surface Processes and Landforms, 45, 681-693. DOI: 10.1002/esp.4765
  • Conesa García, C. & Pérez Cutillas, P. (2014). Alteraciones geomorfológicas recientes en los sistemas fluviales mediterráneos de la Península Ibérica: Síntomas y problemas de incisión en los cauces. Revista de Geografía Norte Grande, 59, 25-44. DOI: 10.4067/S0718-34022014000300003
  • Dhont, B. & Ancey, C. (2018). Are Bedload Transport Pulses in Gravel Bed Rivers Created by Bar Migration or Sediment Waves? Geophysical Research Letters, 45, 5501-5508. DOI: 10.1029/2018GL077792
  • Dinehart, R. L. (1992). Evolution of coarse gravel bed forms: field measurements at flood stage. Water Resources Research, 28, 2667-2689. DOI: 10.1029/92WR01357
  • Downs, P. W., Soar, P. J. & Taylor, A. (2016). The anatomy of effective discharge: the dynamics of coarse sediment transport revealed using continuous bedload monitoring in a gravel-bed river during a very wet year. Earth Surf. Proc. and Landf., 41(2), 147-161. DOI: 10.1002/esp.3785
  • García-Ruíz, J. M. & Lana-Renault, N. (2011). Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region-A review. Agric., Ecosyst. Environ, 140(3-4), 317-338. DOI: 10.1016/j.agee.2011.01.003
  • Gomez, B. (1983). Temporal variations in bedload transport rates: the effects of progressive bed armouring. Earth Surface Processes and Landforms, 8, 41-54. DOI: 10.1002/esp.3290080105
  • Gomez B. & Soar P. J. (2023). Bedload transport and the stream power approach. Proc. R. Soc. A.479, 20220783. DOI: 10.1098/rspa.2022.0783
  • Grant, G. E. (1997). Critical flow constrains flow hydraulics in mobile-bed streams: a new hypothesis. Water Resources Research, 33, 349-358.
  • Hinton, D., Hotchkiss, R. H., & Cope, M. (2018). Comparison of calibrated empirical and semi-empirical methods for bedload transport rate prediction in gravel bed streams. Journal of Hydraulic Engineering, 144, 17. DOI: 10.1061/(ASCE)HY.1943-7900.0001474
  • Kondolf, G. M. (1994). Geomorphic and environmental effects of instream gravel mining. Landscape Urban Plann., 28, 225-243.
  • Liébault, F. & Piégay, H. (2002). Causes of 20th century channel narrowing in mountain and piedmont rivers of southeastern France. Earth Surface Processes and Landforms, 27, 425-444. DOI: 10.1002/ esp.328
  • Martín-Vide, J. P., Ferrer-Boix, C., & Ollero, A. (2010). Incision due to gravel mining: modeling a case study from the Gállego River, Spain. Geomorphology, 117, 261-271. DOI: 10.1016/j.geomorph .2009.01.019
  • Molnar, P., Densmore, A. L., McArdell, B. W., Turowski, J. M., & Burlando, P. (2010). Analysis of changes in the step-pool morphology and channel profile of a steep mountain stream following a large flood. Geomorphology, 124, 85-94. DOI: 10.1016/j.geomorph.2010.08.014
  • Monsalve, A., Segura, C., Hucke, N., & Katz, S. (2020). A bed load transport equation based on the spatial distribution of shear stress Oak Creek revisited. Earth Surf. Dynam., 8, 825-839. DOI: 10.5194/esurf-8-825-2020
  • Nanson, G. C. & Croke, J. C. (1992). A genetic classification of floodplains. Geomorphology, 4(6), 459-486. DOI: 10.1016/0169-555X(92)90039-Q
  • Nelson, J. M., Shreve, R. L., McLean, S. R., & Drake, T. G. (1995). Role of near-bed turbulence structure in bed load transport and bed form mechanics. Water Resources Research, 31, 2071-2086.
  • Ollero A., Conesa-García C., & Vidal-Abarca M. R. (2021). Buenas prácticas en gestión y restauración de cursos efímeros mediterráneos: resiliencia y adaptación al cambio climático. Editum. Ediciones de la Universidad de Murcia
  • Pardo, J. E. (1991). La erosión antrópica en el litoral valenciano. COPUT, Generalitat Valenciana, 240 pp. Parker, G. (2008). Transport of gravel and sediment mixtures. ASCE Manual 54 Sedimentation Engineering: Processes, Measurements, Modeling, and Practice. ASCE. Reston, VA, American Society of Civil Engineers, 1132 pp.
  • Parker, G., Clifford, N. J., & Thorne, C. R. (2011). Understanding the influence of slope on the threshold of coarse grain motion: Revisiting critical stream power. Geomorphology, 126, 51-65. DOI: 10.1016/j. geomorph.2010.10.027
  • Powell, D. M. (1998). Patterns and processes of sediment sorting in gravel-bed rivers. Prog. Phys. Geogr., 22, 1-32. DOI: 10.1177/03091333980220010
  • Rabanaque, M. P. (2024). Hydromorphological analysis of ephemeral streams: integrating remote sensing and machine learning approaches. Universidad de Zaragoza: Zaragoza, 17 June.
  • Rabanaque, M. P., Martínez-Fernández, V., Calle, M., & Benito, G. (2022). Basin-wide hydromorphological analysis of ephemeral streams using machine learning algorithms. Earth Surface Processes and Landforms, 47, 328-344. DOI: 10.1002/esp.5250
  • Rabanaque, M. P., Martínez-Fernández V., Calle, M., Castillo, O., & Benito, G. (2024). Spatio-temporal analysis of geomorphic recovery along an altered ephemeral stream using automated image processing. Geomorphology, 450, 109069. DOI: 10.1016/j.geomorph.2024.109069
  • Recking, A. (2013). A simple method for calculating reach-averaged bedload transport. Journal of Hydraulic Engineering, 139. DOI: 10.1061/(ASCE)HY.1943-7900.0000653
  • Recking, A., Frey, P., Paquier, A., & Belleudy, P. (2009). An experimental investigation of mechanisms responsible for bedload sheet production and migration. J. Geophys. Res., 114, F03010.
  • Recking, A., Johannot, A., Horita, K., Nasr, M., Zanker, S., Vázquez-Tarrío, D., Fontaine, F., & Melun, G. (2024). An attempt to take into account natural variability in 1D bedload prediction. Journal of Geophysical Research: Earth Surface. DOI: 10.1029/2023JF007601
  • Recking, A., Piton, G., Vazquez-Tarrio, D., & Parker, G. (2016). Quantifying the morphological print of bedload transport. Earth Surface Processes and Landform. DOI: 10.1002/esp.3869
  • Recking, A., Vázquez Tarrío, D., & Piton, G. (2023). The contribution of grain sorting to the dynamics of the bedload active layer. Earth Surface Processes and Landforms, 48(5), 979-996. DOI: 10.1002/ esp.5530
  • Rickenmann, D. (2020). Effect of Sediment Supply on Cyclic Fluctuations of the Disequilibrium Ratio and Threshold Transport Discharge, Inferred From Bedload Transport Measurements Over 27 Years at the Swiss Erlenbach Stream. Water Resources Research, 56. DOI: 10.1029/2020WR027741
  • Rovira, A., Batalla, R. J., & Sala, M. (2005). Response of a river sediment budget after historical gravel mining (the lower Tordera, NE Spain). River Research and Applications, 21(7), 829-847. DOI: 10.1002/rra.885
  • Sanchis-Ibor, C. & Segura-Beltrán, F. (2014). Spatial variability of channel changes in a Mediterranean ephemeral stream in the last six decades (1946-2006). Cuadernos de Investigación Geográfica, 40, 89. DOI: 10.18172/cig.2530
  • Sanchis-Ibor, C., Segura-Beltrán, F., & Almonacid-Caballer, J. (2017). Channel forms recovery in an ephemeral river after gravel mining (Palancia River, Eastern Spain). Catena, 158, 357-370. DOI: 10.1016/j.catena.2017.07.012
  • Scorpio, V., Aucelli, P. P., Giano, S. I., Pisano, L., Robustelli, G., Rosskopf, C. M., & Schiattarella, M. (2015). River channel adjustments in Southern Italy over the past 150 years and implications for channel recovery. Geomorphology, 251, 77-90. DOI: 10.1016/j.geomorph.2015.07.008
  • Segura-Beltrán, F. (1983). Las terrazas de la rambla de Cervera. Cuadernos de Geografía, 34, 1-30. Segura-Beltrán, F. (1990). Las ramblas valencianas: algunos aspectos de hidrología, geomorfología y sedimentología. València, Universitat de València.
  • Segura-Beltrán, F. (1995). El Cuaternario continental en las tierras septentrionales valencianas. El cuaternario del País Valenciano, 83-96 pp.
  • Segura-Beltrán, F. (2013). Rambles i barrancs: els rius de pedres. Mètode Science Studies Journal, 38. https://metode.cat/revistes-metode/monografics/rambles-i-barrancs-els-rius-de-pedres.html
  • Segura-Beltrán, F. & Sanchis-Ibor, C. (2011). Efectos de una crecida en un cauce antropizado. La riada del Palància de octubre de 2000. Cuadernos de Geografía de la Universitat de València, 147-168. DOI: 10.7203/CGUV.14215
  • Segura-Beltrán, F. & Sanchis-Ibor, C. (2013). Assessment of channel changes in a Mediterranean ephemeral stream since the early twentieth century. The Rambla de Cervera, eastern Spain. Geomorphology, 201, 199-214. DOI: 10.1016/j.geomorph.2013.06.021
  • Segura-Beltrán F., Sanchis-Ibor C., & Vidal-Salvador A. (2020). La incisión como efecto de los cambios ambientales en ríos efímeros. En Desafíos y oportunidades de un mundo en transición: Una interpretación desde la Geografía (pp. 145-160). PUV-Tirant lo Blanch.
  • Soar, P. J. & Downs, P. W. (2017). Estimating bedload transport rates in a gravel-bed river using seismic impact plates: Model development and application. Environmental Modelling & Software, 90, 182-200.
  • Surian, N. & Rinaldi, M. (2004). Channel adjustments in response to human alteration of sediment fluxes: examples from Italian rivers. IAHS publication, 288, 276-282.
  • Vázquez-Tarrío, D., Piégay, H., & Menéndez-Duarte, R. (2020). Textural signatures of sediment supply in gravel-bed rivers: Revisiting the armour ratio. Earth-Science Reviews, 207, 103211. DOI: 10.1016/ j.earscirev.2020.103211
  • Vericat, D., Wheaton, J. M., & Brasington, J. (2017). Revisiting the morphological approach: Opportunities and challenges with repeat high-resolution topography. En Gravel-Bed Rivers: Process and Disasters (pp. 121-158). Nueva York: Wiley.
  • Whiting, P., Dietrich, W. E., Leopold, L. B., Drake, T. G., & Sherve, R. L. (1988). Bedload sheets in heterogenous sediments. Geology, 16(2), 105, C109. DOI: 10.1130/0091-7613(1988)016<0105:BSIHS>2.3.CO;2