New aging properties of the Clayton-Oakes model based on multivariate dispersion

  1. Arias Nicolás, José Pablo
  2. Mulero González, Julio
  3. Núñez Barrera, Olga
  4. Suárez Llorens, Alfonso
Revista:
Sort: Statistics and Operations Research Transactions

ISSN: 1696-2281

Año de publicación: 2010

Volumen: 34

Número: 1

Páginas: 79-94

Tipo: Artículo

Otras publicaciones en: Sort: Statistics and Operations Research Transactions

Resumen

In this work we present a recent de?nition of Multivariate Increasing Failure Rate (MIFR) based on the concept of multivariate dispersion. This new de?nition is an extension of the univariate characterization of IFR distributions under dispersive ordering of the residual lifetimes. We apply this de?nition to the Clayton-Oakes model. In particular, we provide several conditions to order in the multivariate dispersion sense the residual lifetimes of random vectors with a dependence structure given by the Clayton-Oakes survival copula. We illustrate our results with a graphical method.

Referencias bibliográficas

  • Ahamadi Javid, A. (2008). Copulas with truncation-invariance property. Communications in Statistics, Theory and Methods. DOI:10.1080/03610920802133301
  • Arias-Nicolás, J. P., Belzunce, F., Núñez-Barrera, O. and Suárez-Llorens, A. (2009). Amultivariate IFR notion based on the multivariate dispersive ordering. Applied Stochastic Models in Business and Industry, 25, 339-358.
  • Arias-Nicolás, J. P., Fernández-Ponce, J. M., Luque-Calvo, P. and Suárez-Llorens, A. (2005). The multivariate dispersion order and the notion of copula applied to the multivariate t-distribution. Probability in the Engineering and Informational Science, 19, 363-375.
  • Arjas, E. (1981). The failure and hazard processes in multivariate reliabiblity system. Mathematics of Operations Research, 6, 551-562.
  • Barlow, R. E. and Proschan F. (1975). Statistical Theory of Reliability and Life Testing: Probability Models. Holt, Rinehart and Winston, New York.
  • Basu, A. P. (1971). Bivariate failure rate. Journal of the American Statistical Association, 66, 103-104.
  • Bassan, B. and Spizzichino, F. (2005). Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes. Journal of Multivariate Analysis, 93, 313-339.
  • Belzunce, F., Candel, J. and Ruiz, J. M. (1996). Dispersive ordering and characterizations of aging classes. Statistics & Probability Letters, 28, 321-327.
  • Belzunce, F., Ruiz, J. M. and Suárez-LLorens, A. (2008). On multivariate dispersion orderings based on the standard construction. Statistics & Probability Letters, 78, 271-281.
  • Belzunce, F. and Shaked, M. (2007). Stochastic orders and aging notions. In Encyclopedia of Statistics in Quality and Reliability, edited by F. Ruggeri, F. Faltin and R. Kenett, Wiley, London, 1931-1935.
  • Bogaerts, K. and Lesaffre, E. (2008a). Estimating local and global measures of association for bivariate interval censored data with a smooth estimate of the density. Statistics in Medicine, 27, 5941-5955.
  • Bogaerts, K. and Lesaffre, E. (2008b). Modelling the association of bivariate interval-censored data using the copula approach. Statistics in Medicine, 27, 6379-6392.
  • Block, H. W. (1977a). Monotone failure rates for multivariate distributions. Naval Research Logistic Quarterly, 24, 627-637.
  • Block, H. W. (1977b). Multivariate reliabiblity classes. Applications in Statistics. P. R. Krinshnaiah, edited by North Holland, 79-88.
  • Brindley, E. C. and Thompson, W. A., Jr. (1972). Dependence and aging aspects of multivariate survival. Journal of the American Statistical Association, 67, 822-830.
  • Charpentier, A. and Juri, A. (2006). Limiting dependence structures for tail events, with applications to credit derivatives. Journal of Applied Probability, 43, 563-586.
  • Clayton, D. G. (1978). Amodel for association in bivariate life tables and its applications in epidemiological studies of familiar tendency in chronic disease incidence. Biometrika, 65, 141-151.
  • Cook, R. D. and Johnson, M. E. (1981). A family of distributions for modelling non-elliptically symmetric multivariate data. Journal of the Royal Statistical Society, Series B, 43, 210-219.
  • De Michele, C., Salvadori, G., Canossi, M., Petaccia, A. and Rosso, R. (2005). Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrologic Engineering ASCE, 10, 50-57.
  • Fernández-Ponce, J. M. and Suárez-Llorens, A. (2003). A multivariate dispersion order based on quantiles more widely separated. Journal of Multivariate Analysis, 85, 40-53.
  • Genest, C. and Favre, A. C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12, 347-368.
  • Giovagnoli, A. and Wynn, H. P. (1995). Multivariate dispersion orderings. Statistics & Probability Letters, 22, 325-332.
  • Harris, R. (1970). A multivariate definition for increasing hazard rate distributions functions. Annals of Mathematical Statistics, 37, 713-717.
  • Johnson, N. L. and Kotz, S. (1975). A vector multivariate hazard rate. Journal of Multivariate Analysis, 5, 53-66.
  • Manatunga, A. K. and Chen, S. (2000). Sample size estimation for survival outcomes in cluster-randomized studies with small cluster sizes. Biometrics, 56, 616-626.
  • Marshall, A. W. (1975). Multivariate distributions with monotone hazard rate. Reliability and Fault Tree Analysis. SIAM Philadelphia, 259-284.
  • Marshall, A. W. and Olkin, I. (1988). Families of multivariate distributions. Journal of the American Statistical Association, 83, 834-841.
  • Mulero J. and Pellerey, F. (2010). Bivariate aging properties under archimedean dependence structures. Communications in Statistics: Theory and Methods. In press.
  • Nelsen, R. B. (1999). An introduction to copulas. Lectures Notes in Statistics, 139, Springer-Verlag, New York.
  • Oakes, D. (2005). On the preservation of copula structure under truncation. The Canadian Journal of Statistics, 33, 465-468.
  • Oja, H. (1983). Descriptive statistics for multivariate distributions. Statistics & Probability Letters, 1, 327- 332.
  • Pellerey, F. and Shaked, M. (1997). Characterizations of the IFR and DFR aging notions by means of the dispersive order. Statistics & Probability Letters, 33, 389-393.
  • Saunders, I. and Moran, P. (1978). On the Quantiles of the Gamma and F Distributions. Journal of Applied Probability, 15, 426-432.
  • Savits, T. H. (1985). A Multivariate IFR distributions. Journal of Applied Probability, 22, 197-204.
  • Shaked, M. and Shanthikumar, J. G. (1991). Dinamic multivariate aging notions in Reliability Theory. Sthocastic Processes and Their Appications, 38, 85-97.
  • Shaked, M. and Shanthikumar, J. G. (1998). Two variability orders. Probability in the Engineering and Informational Sciences, 12, 1-23.
  • Shaked, M. and Shanthikumar, J. G. (2007). Sthocastic Orders. Springer Series in Statistics.
  • Sun, L, Wang, L. and Sun J. (2006). Estimation of the association for bivariate interval-censored failure time data. Scandinavian Journal of Statistics, 33, 637-649.
  • Sungur, E. A. (1999). Truncation invariant dependence structures. Communications in Statistics: Theory and Methods, 28, 2553-2568.
  • Sungur, E. A. (2002). Some results on truncation dependence invariant class of copulas. Communications in Statistics: Theory and Methods, 31, 1399-1422.