Análisis de contenido de las pruebas de acceso a la universidad en la asignatura de Química en Andalucía

  1. Rosario Franco Mariscal
  2. José María Oliva Martínez
  3. Almoraima Gil Montero
Journal:
Revista Eureka sobre enseñanza y divulgación de las ciencias

ISSN: 1697-011X

Year of publication: 2015

Volume: 12

Issue: 3

Pages: 456-474

Type: Article

DOI: 10.25267/REV_EUREKA_ENSEN_DIVULG_CIENC.2015.V12.I3.05 DIALNET GOOGLE SCHOLAR lock_openRODIN editor

More publications in: Revista Eureka sobre enseñanza y divulgación de las ciencias

Abstract

In this work, the test question typology to higher education access in chemistry subject has been studied. This study was performed in the autonomous community of Andalusia. According to curriculum topics and the category system proposed by Smith, Nakhleh y Bretz (2010) for chemistry exams, 576 questions were analyzed. The most frequent topics were stoichiometry, formulation and chemical nomenclature and acid-base equilibria, which accounted for about two thirds of the questions. The three categories of questions used were: definition, algorithmic and conceptual questions were used. It was observed a predominance of the algorithmic questions, although in recent years, some progresses of conceptual questions have been observed, but not statistically significant changes. A clear dependence between the type of question and the specific issue involved was observed. Therefore, questions about formulation were mostly included in the “definition” category, question about stoichiometry and thermodynamic in the “algorithmic” category and atom, periodic table and chemical bond questions were included in the conceptual category. From the data obtained, the need for a reorientation in the future of PAU tests is discussed

Bibliographic References

  • Acevedo, J.A. (2005). TIMSS y PISA. Dos proyectos internacionales de evaluacion del aprendizaje escolar en ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 2(3), 282-301.
  • Anderson L.W. & Krathwohl D. R. (eds.) (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. New York: Longman.
  • Banet, E. (2007). Finalidades de la educacion cientifica en Secundaria: Opinion del profesorado sobre la situacion actual. Enseñanza de las Ciencias, 25(1), 5-20.
  • Bloom B. S., Engelhart M. D., Fust E. J., Hill W. H. & Krathwohl D.R., (1956). Taxonomy of educational objectives: Part I, cognitive domain, McKay: New York.
  • Bodner, G.M. & Domin, D.S. (2000). Mental models: The role of representarions in problems solving in chemistry. University Chemistry Education, 1(1), 24-30.
  • Canas, A.; Lupion, T. & Nieda, J. (2014). Analisis de las pruebas de evaluacion de diagnostico de ciencias de la naturaleza de 2o de la ESO en Andalucia. Alambique, 76, 63-70.
  • Gallardo Gil, M., Mayorga Fernandez, Ma.J. & Sierra Nieto, J.E. (2014). La competencia de 'conocimiento e interaccion con el mundo fisico y natural': Analisis de las pruebas de evaluacion de diagnostico de Andalucia. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 11(2), 160-180. Recuperado de http://hdl.handle.net/10498/15973
  • Gallardo-Gil, M., Fernandez-Navas, M., Sepulveda-Ruiz, Ma.P., Servan, Ma.J., Yus, R. & Barquin, J. (2010). PISA y la competencia cientifica: Un analisis de las pruebas de PISA en el Area de Ciencias. RELIEVE, 16(2), 1-17. Recuperado de: Http://www.uv.es/RELIEVE/v16n2/RELIEVEv16n2-6.htm
  • Gil, D. & Vilches, A. (2006). .Como puede contribuir el proyecto PISA a la mejora de la ensenanza de las ciencias (y de otras areas de conocimiento)? Revista de Educación, extraordinario, 341, 295-311.
  • Gil-Montero, A., Simonet-Morales, M., Blanco-Montilla, G. & Oliva, J.M. ( 2012). Analysis of Preliminary Diagnostic Tests on New Students in Scientific Degrees: A Case Study. En.
  • G. Rodriguez-Gomez (Presidencia), The Need for Educational Research to Champion Freedom, Education and Development for All. Comunicacion presentada en European Conference On Educational Research (ECER), Cadiz, Espana.
  • Grilli, J.; Laxague, M. & Barboza, L. (2015). Dibujo, fotografia y Biologia. Construir ciencia con y a partir de la imagen. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 12(1), 91-108. Recuperado de: Http://hdl.handle.net/10498/16926
  • Hernandez Hernandez, F. (2006). El informe PISA: Una oportunidad para replantear el sentido del aprender en la escuela secundaria. Revista de Educación, numero extraordinario, 357-379.
  • Justi, R. (2009). Learning how to model in science classroom: Key teacher's role in supporting the development of students' modelling skills. Educación Química, 20(1), 32-40.
  • Kozma, R. & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. Gilbert (Ed.), Visualization in science education (pp. 121-146). London: Kluwer.
  • Krathwohl, D.R. (2002). A Revision of Bloom's Taxonomy: An Overview. Theory into Practice, 41(4), 212-218.
  • Landis J. & Koch G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159-74.
  • Linn, M.C. (1987). Establishing a research base for science education: Challenges, trends and recommendations. Journal of Research in Science Teaching, 24(3), 191-216.
  • Menoyo, MaP. (2003). Evaluacion de habilidades cientificas en las PAU de biologia. Alambique, 37, 58-69.
  • Nakhleh, M.B.; Lowery, K.A. & Mirchell, R.C. (1996). Narrowing the gap between concepts and algorithms in freshman chemistry. Journal of Chemical Education, 73(8), 758-762.
  • Oliva, J. Ma y Acevedo, J. A. (2005). La ensenanza de las ciencias en primaria y secunda-ria hoy. Algunas propuestas de futuro. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 2(2), 142-151. Recuperado de http://reuredc.uca.es
  • Oliva, J.Ma; Aragon, MaM. & Cuesta, J. (2015). The competence of modelling in learning chemical change: A study with secondary school students. International Journal of Science and Mathematics Education, 13, 751-791.
  • Pedrinaci, E. (2003). Evaluacion externa: Un instrumento necesario. Alambique. Didáctica de las Ciencias Experimentales, 37, 9-18.
  • Perez Juste, R. (2007). La evaluacion externa y sus implicaciones. Aspectos tecnicos, practicos y eticos. Avances e Supervisión Educativa, 6. Recuperado de: Http://www.adide.org/revista/index.php? option=com-content&task=view&id=197&Itemid=47
  • Sanmarti, N. (2003). Evaluacion externa, por que y para que. Alambique. Didáctica de las Ciencias Experimentales, 37, 9-18.
  • Sanabria-Rios, D. & Bretz, S.L. (2010). Investigating the relationship between faculty cognitive expectations about learning chemistry and the construction of exam questions. Chemistry Education Research and Practice, 11, 212-217.
  • Skjong, R. & Wentworth, B. (2000). Expert Judgement and risk perception. Recuperado de http://research.dnv.com/skj/Papers/SkjWen.pdf
  • Smith, K.C., Nakhleh, M.B. & Bretz, S.L. (2010). An expanded Framework for analyzing general chemistry exams. Chemistry Education Research and Practice, 11, 147-153.
  • Stamovlasis, D.; Tsaparlis, G.; Kamilatos, C.; Papaoikonomou, D. & Zarotiadou, E. (2005). Conceptual understanding versus algorithmic problem solving: Further evidence from national chemistry examination. Chemistry Education Research & Practice, 6(2), 104-118.
  • Tamir, P. (1998). Assessment and evaluation in science education: Opportunities to learn and outcomes, En B.J. Fraser and K.G. Tobin (Eds.), International handbook of science education, (pp. 761-789), London, Kluwer Academic Publishers.
  • Zoller, U. (2001). Alternative assessment as (critical) means of facilitating HOCS-promoting teaching and learning in chemistry education. Chemistry Education Research and Practice in Europe, 2(1), 9-17.
  • Zoller, U.; Lubesky, A.; Nakhleh, M.B.; Tessier, B. & Dori, J. (1995), Success on algorithmic and LOCS vs. conceptual chemistry exam questions. Journal of Chemical Education, 72, 987-989.