Control de sistemas caóticos basado en condición de evento variable ajustada a la dinámica del proceso

  1. J. Francisco Moreno Verdulla 1
  2. Manuel J. López Sánchez 1
  3. Manuel Prian Rodríguez 1
  1. 1 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

Journal:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Year of publication: 2011

Volume: 8

Issue: 3

Pages: 159-166

Type: Article

DOI: 10.1016/J.RIAI.2011.06.004 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista iberoamericana de automática e informática industrial ( RIAI )

Abstract

In this work it is presented a practical method for controlling chaotic systems based on variable event condition adjusted to process dynamics. Simulation results are shown for three chaotic systems using two control algorithms (unipolar and bipolar). No previous knowledge of the mathematical model of the system to control is needed, and on-line sample data of only one measurement variable are used. Practical aspects such as control signal saturation and measurement noise are also considered. Satisfactory results show the method application capacity to actual systems.

Bibliographic References

  • Abed, E.H., H.O. Wang, and A. Tesi. (1995). “Control of Bifurcations and Chaos”. The Control Handbook, CRC Press and IEEE Press.
  • Andrievskii, B.R. y A.L. Fradkov. (2003). “Control of Chaos: Methods and Applications. I. Methods”, Automation and Remote Control, 64, no. 5, pp. 673 713.
  • Aracil, J. (2011). “El Ingeniero Científico o Casa con Dos Puertas Mala Es de Guardar”, Revista Iberoamericana de Automática e Informática Industrial, 8, no. 1, pp. 5 13.
  • Boccaletti, S., C. Grebogi, Y.C. Liai, H. Mancini and D. Maza. (2000). “The Control of Chaos: Theory and Applications”. Physics Reports no. 329, pp. 103 197.
  • Candaten, M. and S. Rinaldi. (2000). “Peak-to-peak dynamics: a critical survey” International Journal of Bifurcation and Chaos, 10, no. 8, pp. 1805 1819.
  • Chen, G. (1999). “Controlling Chaos and Bifurcations in Engineering Systems”. CRC Press.
  • Chua, L. O., M. Komuro and T. Matsumoto. (1986). “The Double Scroll Family” IEEE Transactions On Circuits And Systems, CAS-33, no. 11, pp. 1073 1118.
  • Fiedler, B., V. Flunkert, M. Georgi, P. Hovel, and E. Sch ¨ oll. (2007). “Refuting ¨ the Odd-Number Limitation of Time-Delayed Feedback Control” Phys Rev Lett 98, no. 11.
  • Gonzalez, D. L. and Piro, O. (1984). “Disappearance of chaos and integrability in an externally modulated nonlinear oscillator”. Phys Lett A 30 no. 5 pp. 2788 2790.
  • Gonzalez, R., M. Prian, M.A. Fernandez, J.L. Rojas and E. Romero. (2005). “A Symmetric Piecewise-linear Chaotic system witn a Single Equilibrium Point.” Int.Journal of Bifurcation and Chaos, vol. 15, no. 4 pp. 1411 1415.
  • Güemez, J. and M.A. Matias. (1993). “Control of chaos in unidimensional maps”. Phys Lett A no. 181 pp. 29 32.
  • Kennedy, M. P. (1992). “Robust OP Amp realization of Chua’s Circuit” Frequenz 46, no. 3-4, pp. 66 80.
  • Kiers, K., D. Schmidt and J. C. Sprott. (2004). “Precision measurements of a simple chaotic circuit” American Journal of Physics 72, no. 4, pp. 503 509.
  • Larrondo, H. A., D. R. Avalos and R. A. Laura. (1996). “Dynamics of a Kicked Oscillator with a Delay in Its Parametric Feedback Loop: An Analytical Study”, Nonlinear Dynamics, 11 no. 4 pp. 407 419.
  • López, M.J., M. Prian and F.M. Verdulla. (2006). “Chaos Control Method”. ´ Internal Report Nov. 2006. Dpto. ISA. UCA.
  • López, M.J., F.M. Verdulla and M. Prian. (2007). “Chaos Control Based on Non- ´ linear State Feedback and Linear H-infinite Controller Synthesis”. WSEAS T. on Sys., 1, 6, pp. 68 75.
  • Matias, M.A. and J. Guemez. (1994). “Stabilization of chaos by proportional ¨ pulses in system variables”. Phys Rev Lett 72 no. 10 pp. 1455 1458.
  • Murali, K. and S. Sinha. (2003). “Experimental realization of chaos control by thresholding” Physical Review, E-68, pp. 016210-1 016210-6.
  • Nakajima, H. (1997). “On analytical properties of delayed feedback control of chaos” Phys. Lett. A no. 232 pp. 207 210.
  • Nakajima, H., Y. Ueda. (1998). “Limitation of generalized delayed feedback control” Physica D no. 111 pp. 143 150.
  • Ogorzalek, M.J. (1993). “Taming Chaos: Part II: Control,” IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, 40, no. 10, pp. 700 707.
  • Ogorzalek, M.J. (1998). “Design considerations for electronics chaos controllers” Chaos, Sol. and Fractals, 9, pp. 295 306.
  • Ott, E., C. Grebogi and J. A. Yorke. (1990). “Controlling chaos”, Phys. Rev. Lett, 64, no. 11, pp. 1196 1199.
  • Piccardi, C. and S. Rinaldi. (2000). “Optimal control of chaotics systems via peak-to-peak maps” Phys. D 144 pp. 298 308.
  • Piccardi, C. and S. Rinaldi. (2003). “The impact of noise and sampling frequency on the control of peak-to-peak dynamics” I.J. of Bif. and Chaos, 12, no. 6 pp. 1579 1586.
  • Prian, M., M.J. Lopez and F.M. Verdulla. (2009). “Estabilización de órbitas periódicas inestables en sistemas caóticos mediante controlador híbrido”. Dpto. ISA, UCA.
  • Pyragas, K. (1992). “Continuous control of chaos by self-controlling feedback” Physics Letters A no. 170 pp. 421 428.
  • Pyragas, K., V. Pyragas, Z. Kiss and J. L. H. Benner. (2004) “Adaptive control of unknown unstable steady states of dynamical systems, ”Phys. Review E, no. 70.
  • Pyragas, V. and K. Pyragas. (2006). “Delayed feedback control of the Lorenz system: An analytical treatment at a subcritical Hopf bifurcation” Physical Review E, no. 73.
  • Pyragiene, T. and K. Pyragas. (2005). “Delayed feedback control of forced selfsustained oscillations” Phys. Rev. E, no. 72.
  • Ushio, T. (1996). “Limitation of delayed feedback control in nonlinear discretetime systems,” IEEE Trans. Circ. Sys. I, 43, pp. 815 816.
  • Verdulla, F.M., M.J. Lopez and M. Prian. (2009). “A pulsed control method for ´ chaotic systems” IEEE Latin America Transactions, 7, no. 1, pp. 1 11.
  • Yamamoto, S., T. Hino and T. Ushio. (2001). “Dynamic Delayed Feedback Controllers for Chaotic Discrete-Time Systems,” IEEE Trans. Circuits Sys. I, 48, no. 6, pp. 789 795.
  • Yang, T. (1999). “Impulsive Control,” IEEE Transactions on Automatic Control, 44, n. 5 pp. 1081 1083.