Predictores de dominio específico para la fluidez de cálculo al inicio de la Educación Primaria

  1. Estíbaliz Aragón 1
  2. José I. Navarro 1
  3. Manuel Aguilar 1
  1. 1 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

Revista:
Electronic journal of research in educational psychology

ISSN: 1696-2095

Año de publicación: 2016

Volumen: 14

Número: 40

Tipo: Artículo

DOI: 10.14204/EJREP.40.15107 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Electronic journal of research in educational psychology

Resumen

Introducción. El presente estudio analizó el papel predictor sobre la fluidez de cálculo de distintos predictores específicos que conforman las habilidades numéricas tempranas. Método. Un total de 122 alumnos (M = 69.89 meses; DT = 3.44), de los cuales 54 fueron niñas y 68 niños. Las habilidades numéricas fueron evaluadas al finalizar la educación infantil y la fluidez de cálculo en el primer curso de educación primaria. Resultados. El resultado del análisis de regresión lineal arrojó un modelo predictivo que explicaba el 27.9% de la varianza de la fluidez de cálculo. El conteo verbal (β = .377), conteo resultante (β = .191) y estimación (β = .159), fueron la variables que explicaron en mayor medida la fluidez de cálculo en 1º de Educación Primaria. Discusión y Conclusión. Las habilidades numéricas predijeron la fluidez de cálculo, sin embargo, no fue así en el caso de las habilidades relacionales. Se discute la importancia del conteo como dominio para el aprendizaje de las matemáticas.

Referencias bibliográficas

  • Aragón, E. L., Delgado, I., Aguilar, M., Araújo, A. y Navarro, J. I. (2013). Estudio de la influencia de la inteligencia y el género en la evaluación matemática temprana. European Journal of Education and Psychology, 6(1), 5-18.
  • Aragón, E., Aguilar, M., Navarro, J. y Araújo, A. (2015). Efectos de la aplicación de un programa de entrenamiento específico para el aprendizaje matemático temprano en edu- cación infantil. Revista Española de Pedagogía, 260, 99-113.
  • Aragón, E. L., Navarro, J.I., Aguilar, M. y Cerda, G. (2015). Predictores cognitivos del conocimiento numérico temprano en alumnado de 5 años. Revista de Psicodidáctica, 20(1), 83-97. doi: 10.1387/RevPsicodidact.11088
  • Araújo, A., Aragón, E., Aguilar, M., Navarro, J. y Ruiz, G. (2014). Un estudio exploratorio para la adaptación de la versión española revisada del "Early Numeracy Test-R" para evaluar el aprendizaje matemático temprano. European Journal of Education and Psychology, 7(2), 83-93.
  • Baroody, A. J., Bajwa, N. P. y Eiland, M. (2009). Why can’t Johnny remember the basic facts?. Developmental Disabilities Research Review, 15, 69-79. doi:10.1002/ddrr.45
  • Baroody, A.J. (2011). Learning: A framework. In F. Fennell (Ed.), Achieving fluency in spe- cial education and mathematics (pp. 15-58). Reston, VA: National Council of Teach- ers of Mathematics.
  • Booth, J. L. y Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016-1031. doi:10.1111/j.1467- 8624.2008.01173.x
  • Booth, J. L. y Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41, 189-201. doi:10.1037/0012- 1649.41.6.189
  • Bull, R., Espy, K. A. y Wiebe, S. A. (2008). Short-term memory, working memory, and exec- utive functioning in preschoolers: Longitudinal predictors of mathematical achieve- ment at age 7 years. Developmental Neuropsychology, 33, 205-228. doi:10.1080/87565640801982312
  • Canals, R., Carbonell, F., Estaún, S. y Añaños, E. (1991). Proves psicopedagògiques d’aprenentatges instrumentals: Cicles Inicial i Mitjà. Barcelona: Editorial Onda.
  • Clements, D. H. y Sarama, J. (2009). Learning and teaching early math: The learning trajectories approach. New York: Routledge.
  • Clements, D. H. y Sarama, J. (2011). Early childhood mathematics intervention. Science, 333, 968-970. doi:10.1126/science.1204537
  • Cowan, R. y Powell, D. (2014). The contributions of domain-general and numerical factors to third-grade arithmetic skills and mathematical learning disability. Journal of Educa- tional Psychology, 106 (1), 214-229. doi:10.1037/a0034097
  • De Smedt, B., Janssen, R., Bouwens, K., Verschaffel, L., Boets, B. y Ghesquiere, P. (2009). Working memory and individual differences in mathematics achievement: A longitu- dinal study from first grade to second grade. Journal of Experimental Child Psycholo- gy, 103, 186–201. doi:10.1016/j.jecp.2009.01.004
  • Feigenson, L., Dehaene S. y Spelke, E. (2004). Core systems of number. Trends in Cognitive Science, 8, 307–314. doi:10.1016/j.tics.2004.05.002
  • Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L., Seethaler, P. M., … Schatschneider, C. (2010). Do Different Types of School Mathematics Development Depend on Different Constellations of Numerical versus General Cognitive Abilities?. Developmental Psychology, 46(6), 1731–1746.
  • Fuchs, L. S., Fuchs, D., Compton, D.L., Powell, S. R., Seethaler, P. M., Capizzi, A. M., Schatschneider, C. y Fletcher, J. M. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology. 98, 29–43. doi:10.1037/0022-0663.98.1.29
  • Geary, D. C., Hoard, M. K., Nugent, L. y Byrd-Craven, J. (2008). Development of number line representations in children with mathematical learning disability. Developmental Neuropsychology, 33, 277–299. doi:10.1080/87565640801982361
  • Gelman, R. y Gallistel, C. (1978). The Child's Understanding of Number. Cambridge, MA: Harvard University Press.
  • Gersten, R., Jordan, N. C. y Flojo, J. R. (2005). Early identification and interventions for stu- dents with mathematics difficulties. Journal of Learning Disabilities, 38, 293–304.
  • Ho, C. S. y Fuson, K. C. (1998). Children’s knowledge of teen quantities as tens and ones: Comparisons of Chinese, British, and American Kindergartners. Journal of Educa- tional Psychology, 90, 536–544. doi: http://dx.doi.org/10.1037/0022-0663.90.3.536
  • Johansson, B. S. (2005). Number-word sequence skill and arithmetic performance. Scandinavian Journal of Psychology, 46 (2), 157-167. doi:10.1111/j.1467- 9450.2005.00445.x
  • Jordan, N., Kaplan, D., Locuniak, M. y Ramineni, C. (2007). Predicting first-grade math achievement from developmental number sense trajectories. Learning Disabilities Re- search y Practice, 22, 36–46. doi:10.1111/j.1540-5826.2007.00229.x
  • Kilpatrick, J., Swafford, J. y B. Findell (Eds.). (2001). Adding it up: Helping children learn mathematics. Washington DC: National Academies Press.
  • Koponen, T., Aunola, K., Ahonen, T. y Nurmi, J.-E. (2007). Cognitive predictors of single- digit and procedural calculation skills and their covariation with reading skill. Journal of Experimental Child Psychology, 97, 220–241. doi:10.1016/j.jecp.2007.03.001
  • Landerl, K., Bevan, A. y Butterworth, B. (2004). Developmental dyscalculia and basic numer- ical capacities: A study of 8–9-year-old students. Cognition, 93(2), 99–125. doi:10.1016/j.cognition.2003.11.004
  • Locuniak, M. N. y Jordan, N. C. (2008). Using kindergarten number sense to predict calculation fluency in second grade. Journal of Learning Disabilities, 41, 451–459. doi:10.1177/0022219408321126
  • Martins-Mourao, A. y Cowan, R. (1998). The emergence of additive composition of number. Educational Psychology, 18, 377–390.
  • Mazzocco, M. M. M. y Thompson, R. E. (2005). Kindergarten predictors of math learning disability. Learning Disabilities Research y Practice, 20, 142–155. doi:10.1111/j.1540-5826.2005.00129.x
  • National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. Washington, DC: U.S. Department of Edu- cation.
  • Navarro, J. I., Aguilar, M., García, M., Menacho, I., Marchena, E. y Alcalde, C. (2010). Dife- rencias en habilidades matemáticas tempranas en niños y niñas de 4 a 8 años. Revista Española de Pedagogía, 245, 85-98.
  • Noël, M.-P. y Rousselle, L. (2011). Developmental changes in the profiles of dyscalculia: An explanation based on a double exact-and-approximate number representation model. Frontiers in Human Neuroscience, 5, 1–4. doi:10.3389/fnhum.2011.00165
  • Núñez del Río, M. y Lozano Guerra, I. (2003). Evaluación del pensamiento matemático tem- prano en alumnos con déficit intelectual, mediante la prueba TEMA-2. Revista Espa- ñola de Pedagogía, 226, 547-564.
  • Passolunghi, M. C., Lanfranchi, S., Altoè, G. y Sollazzo, N. (2015). Early numerical abilities and cognitive skills in kindergarten children. Journal of Experimental Child Psychol- ogy, 135, 25-42. doi:10.1016/j.jecp.2015.02.001
  • Piaget, J. y Szeminska, A. (1943). Génesis del Número en el niño. Buenos Aires: Guadalupe. Reigosa-Crespo, V., González-Alemañy, E., León, T., Torres, R., Mosquera, R. y Valdés-
  • Sosa, M. (2013). Numerical capacities as domain-specific predictors beyond early mathematics learning: A longitudinal study. PLoS ONE, 8(11): e79711. doi:10.1371/journal.pone.0079711
  • Sarama, J. y Clements, D. H. (2009). Early childhood mathematics education research: Learning trajectories for young children. New York: Routledge.
  • Van Luit, J., Van De Rijt, B., Araújo, A., Aguilar, M., Aragón, E., Ruiz, G., …García- Sedeño, M. (2015). Test de evaluación de la competencia matemática temprana- revisado (TEMT-i). Madrid: EOS.
  • Van Marle, K., Chu, F. W., Li, Y. y Geary, D. C. (2014). Acuity of the approximate number system and preschoolers’ quantitative development. Developmental Science, 17, 492–505. doi:10.1111/desc.12143