Exploración de diferencias de género en los predictores de dominio general y específico de las habilidades matemáticas tempranas

  1. Estíbaliz Aragón Mendizábal
  2. José I. Navarro Guzmán
Journal:
Suma Psicológica

ISSN: 0121-4381

Year of publication: 2016

Volume: 23

Issue: 2

Pages: 71-79

Type: Article

DOI: 10.1016/J.SUMPSI.2016.04.001 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Suma Psicológica

Abstract

The main aim of this study was to determine if there were any gender differences in early mathematical knowledge. In order to achieve this, estimated prediction factors were assessed in 200 schoolchildren of 5years-old. Domain-general cognition variables were evaluated, such as fluid intelligence, working memory, short-term memory, executive functions, and early literacy. Statistical contrasts showed no significant differences between boys and girls. Discriminant analysis did not reveal a gender-based characteristic pattern. However, stepwise regression analysis indicated that, although emergent literacy and fluid intelligence explained the variation in early mathematical knowledge for boys and girls, the third explanatory variable was short-term memory for girls, and working memory for boys. The article concludes that gender differences were not statistically different in relation to general and specific domain predictor variables for early maths skills.

Bibliographic References

  • Adams, A., Simmons, F. & Willis, C. (2015). Exploring relationships between working memory and writing: Individual differences associated with gender. Learning and Individual Differences, 40, 101–107. http://dx.doi.org/10.1016/j.lindif.2015.04.011
  • Aragón, E., Navarro, J., Aguilar, M. & Cerda, G. (2015). Predictores cognitivos del conocimiento numérico temprano en alumnado de 5 años. Revista de Psicodidáctica, 20(1), 83–97. http://dx.doi.org/10.1387/RevPsicodidact.11088
  • Aragón, E. L., Delgado, I., Aguilar, M., Araújo, A. & Navarro, J. I. (2013). Estudio de la influencia de la inteligencia y el género en la evaluación matemática temprana. European Journal of Education and Psychology, 6(1), 5–18.
  • Bedard, K. & Cho, I. (2010). Early gender test score gaps across OECD countries. Economics of Education Review, 29, 348–363. http://dx.doi.org/10.1016/j.econedurev.2009.10.015
  • Below, J. L., Skinner, C. H., Fearrington, J. Y. & Sorrell, C. A. (2010). Gender differences in early literacy: Analysis of kindergarten through fifth-grade dynamic indicators of basic early literacy skills probes. School Psychology Review, 39(2), 240–257. http://dx.doi.org/10.1177/1098300712459080
  • Bourke, L. & Adams, A.-M. (2011). Is it differences in language skill and working memory that account for girls being better at writing than boys? Journal of Writing Research, 3(3), 249–277. http://dx.doi.org/10.17239/jowr-2012.03.03.5
  • Carr, M. & Davis, H. (2001). Gender differences in arithmetic strategy use: A function of skill and preference. Contemporary Educational Psychology, 26, 330–347.
  • Chen, H., Chen, M. F., Chang, T. S., Lee, Y. S. & Chen, H. P. (2010). Gender reality on multi-domains of school-age children in Taiwan: A developmental approach. Personality and Individual Differences, 48(4), 475–480. http://dx.doi.org/ 10.1016/j.paid.2009.11.027
  • Cirino, P. T. (2011). The interrelationships of mathematical precursors in kindergarten. Journal of Experimental Child Psychology, 108, 713–733. http://dx.doi.org/10.1016/j.jecp.2010.11.004
  • Dickerson, A., McIntosh, S. & Valente, C. (2015). Do the maths: An analysis of the gender gap in mathematics in Africa. Economics of Education Review, 46, 1–22. http://dx.doi.org/10.1016/ j.econedurev.2015.02.005
  • Doris, A., O’Neill, D. & Sweetman, O. (2013). Gender, single-sex schooling and maths achievement. Economics of Education Review, 35, 104–119. http://dx.doi.org/10.1016/ j.econedurev.2013.04.001
  • Freeman, C. E. (2004). Trends in Educational Equity of Girls and Women: 2004 (NCES 2005-016). Washington, DC: U.S. Government Printing Office: U.S. Department of Education, National Center for Education Statistics.
  • Fryer, R. & Levitt, S. (2010). An empirical analysis of the gender gap in mathematics. American Economic Journal: Applied Economics, 2(2), 210–240. http://dx.doi.org/10.1257/app.2.2.210
  • Ganley, C. M. & Vasilyeva, M. (2013). The role of anxiety and working memory in gender differences in mathematics. Journal of Educational Psychology, 106(1), 105–120. http://dx.doi.org/10.1037/a0034099
  • Geary, D. C., Hoard, M. K., Nugent, L. & Bailey, D. H. (2013). Adolescents’ functional numeracy is predicted by their school entry number system knowledge. PLoS ONE, 8(1), e54651. doi:10.1371/journal.pone.0054651.
  • Geiser, W. & Lehmann, M. (2008). A note on sex differences in mental rotation in different age groups. Intelligence, 36(6), 556–563. http://dx.doi.org/10.1016/j.intell.2007.12.003
  • Gray, J., Peng, W., Steward, S. & Thomas, S. (2004). Towards a typology of gender-related school effects: Some new perspectives on a familiar problem. Oxford Review of Education, 30(4), 529–550.
  • Gullick, M. M., Sprute, L. A. & Temple, E. (2011). Individual differences in working memory, nonverbal IQ, and mathematics achievement and brain mechanisms associated with symbolic and nonsymbolic number processing. Learning and Individual Differences, 21, 644–654. http://dx.doi.org/10.1016/j.lindif.2010.10.003
  • Hannula, M. M., Lepola, J. & Lehtinen, E. (2010). Spontaneous focusing on numerosity as a domain-specific predictor of arithmetical skills. Journal of Experimental Child Psychology, 107(4), 394–406. http://dx.doi.org/10.1016/j.jecp.2010.06.004
  • Hanushek, E. A. & Woessman, L. (2008). The role of cognitive skills in economic development. Journal of Economic Literature, 46(3), 607–668. http://dx.doi.org/10.1257/jel.46.3.607
  • Hill, A. C., Laird, A. R. & Robinson, J. L. (2014). Gender differences in working memory networks: A BrainMap meta-analysis. Biological Psychology, 102, 18–29. http://dx.doi.org/10.1016/j.biopsycho.2014.06.008
  • Husain, M. & Millimet, D. (2009). The mythical ‘boy crisis’? Economics of Education Review, 28, 38–48. http://dx.doi.org/10.1016/j.econedurev.2007.11.002
  • Hyde, J. S. (2005). The gender similarities hypothesis. American Psychologist, 60(6), 581–592. http://dx.doi.org/10.1037/ 0003-066X.60.6.581
  • Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B. & Williams, C. C. (2008). Gender similarities characterize math performance. Science, 321, 494–495.
  • Jordan, N. C., Kaplan, D., Nabors-Olah, L. & Locuniak, M. (2006). Number sense growth in kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. Child Development, 77(1), 153–175. http://dx.doi.org/10.1111/j. 1467-8624.2006.00862.x
  • Kaufman, S. B. (2007). Sex differences in mental rotation and spatial visualization ability: Can they be accounted for by differences in working memory capacity? Intelligence, 35, 211–223.
  • Keith, T. Z., Reynolds, M. R., Roberts, L. G., Winter, A. L. & Austin, C. A. (2011). Sex differences in latent cognitive abilities ages 5 to 17: Evidence from the differential ability scales—second edition. Intelligence, 39(5), 389–404. http://dx.doi.org/10.1016/j.intell.2011.06.008
  • Lachance, J. & Mazzocco, M. M. M. (2006). A longitudinal analysis of sex differences in math and spatial skills in primary school age children. Learning and Individual Differences, 16(3), 195–216. http://dx.doi.org/10.1016/j.lindif.2005.12.001
  • Lejbak, L., Crossley, M. & Vrbancic, M. (2011). A male advantage for spatial and object but not verbal working memory using the n-back task. Brain and Cognition, 76, 191–196.
  • Levine, S. C., Vasilyeva, M., Lourenco, S. F., Newcombe, N. S. & Huttenlocher, J. (2005). Socioeconomic status modifies the sex difference in spatial skill. Psychological Science, 16, 841–845. http://dx.doi.org/10.1111/j. 1467-9280.2005. 01623.x
  • Lindberg, S. M., Hyde, J. S., Petersen, J. L. & Linn, M. C. (2010). New trends in gender and mathematics performance: A meta-analysis. Psychological Bulletin, 136, 1123–1135. http://dx.doi.org/10.1037/a0021276
  • Navarro, J. I., Aguilar, M., García, M., Menacho, I., Marchena, E. & Alcalde, C. (2010). Diferencias en habilidades matemáticas tempranas en niños y niñas de 4 a 8 años. Revista Española de Pedagogía, 68, 85–98.
  • Navarro, J. I., Aguilar, M., Alcalde, C., Ruiz, G., Marchena, E. & Menacho, I. (2011). Inhibitory processes, working memory, phonological awareness, naming speed, and early arithmetic achievement. Spanish Journal of Psychology, 14(2), 580–588. http://dx.doi.org/10.5209/rev SJOP.2011.v14.n2.6
  • Nayfeld, I., Fuccillo, J. & Greenfield, D. B. (2013). Executive functions in early learning: Extending the relationship between executive functions and school readiness to science. Learning and Individual Differences, 26, 81–88. http://dx.doi.org/10.1016/j.lindif.2013.04.011
  • OECD (2014). Programme for international student assessment PISA 2012. Results in Focus (consultado 3 Ene 2016). Disponible en: http://www.oecd.org/pisa/keyfindings/ pisa-2012-results-overview.pdf
  • Okan, Y., García-Retamero, R. & Muñoz, R. (2015). Habilidades numéricas y salud: una revisión crítica. Revista Latinoamericana de Psicología, 47(2), 111–123. http://dx.doi.org/10.1016/ j.rlp.2015.05.002
  • Östergren, R. & Träff, U. (2013). Early number knowledge and cognitive ability affect early arithmetic ability. Journal of Experimental Child Psychology, 115, 405–421. http://dx.doi.org/10.1016/j.jecp.2013.03.007
  • Palejwala, M. H. & Fine, J. G. (2015). Gender differences in latent cognitive abilities in children aged 2 to 7. Intelligence, 48, 96–108. http://dx.doi.org/10.1016/j.intell.2014.11.004
  • Passolunghi, M. C. & Lanfranchi, S. (2012). Domain-specific and domain-general precursors of mathematical achievement: A longitudinal study from kindergarten to first grade. British Journal of Educational Psychology, 82, 42–63. http://dx.doi.org/10.1111/j. 2044-8279.2011.02039.x
  • Penner, A. M. & Paret, M. (2008). Gender differences in mathematics achievement: Exploring the early grades and the extremes. Social Science Research, 37, 239–253. http://dx.doi.org/10.1016/j.ssresearch.2007.06.012
  • Primi, R., Ferrao, M. E. & Almeida, L. (2010). Fluid intelligence as a predictor of learning: A longitudinal multilevel approach applied to math. Learning and Individual Differences, 20, 445–451. http://dx.doi.org/10.1016/j.lindif.2010.05.001
  • Purpura, D. J. & Ganley, C. M. (2014). Working memory and language: Skill-specific or domain-general relations to mathematics? Journal of Experimental Child Psychology, 122, 104–121. http://dx.doi.org/10.1016/j.jecp.2013.12.009
  • Purpura, D. J., Hume, L. E., Sims, D. M. & Lonigan, C. J. (2011). Early literacy and early numeracy: The value of including early literacy skills in the prediction of numeracy development. Journal of Experimental Child Psychology, 110, 647–658.
  • Raven, J. C. (1996). Raven, matrices progresivas. Escalas CPM Color y SPM General. Madrid, España: TEA Ediciones.
  • Ritter, B. C., Perrig, W., Steinlin, M. & Everts, R. (2014). Cognitive and behavioral aspects of executive functions in children born very preterm. Child Neuropsychology, 20(2), 129–144. http://dx.doi.org/10.1080/09297049.2013.773968
  • Robinson, J. P. & Lubienski, S. T. (2011). The development of gender achievement gaps in mathematics and reading during elementary and middle school: Examining direct cognitive assessments and teacher ratings. American Educational Research Journal, 48(2), 268–302. http://dx.doi.org/10.3102/0002831210372249
  • Schrøter-Joensen, J. & Skyt-Nielsen, H. (2010). Is there a causal effect of high school math on labor market outcomes. The Journal of Human Resources, 44(1), 171–198. http://dx.doi.org/10.1353/jhr.2009.0004
  • Sierra, O. & Ocampo, T. (2013). El papel de la memoria operativa en las diferencias y trastornos del aprendizaje escolar. Revista Latinoamericana de Psicología, 45(1), 63–79.
  • Van der Ven, S. H. G., Kroesbergen, E. H., Boom, J. & Leseman, P. P. M. (2012). The development of executive functions and early mathematics: A dynamic relationship. British Journal of Educational Psychology, 82, 100–119. http://dx.doi.org/10.1111/j. 2044-8279.2011.02035.x
  • Van Luit, J.E.H., Van de Rijt, B.A.M., Araújo, A., Aguilar, M., Aragón, E., Ruiz, G., et al. (en prensa). TEMT-i. Test de Evaluación Matemática Temprana Informatizado. Madrid, España: EOS.
  • Visu-petra, L., Cheie, L. & Benga, O. (2008). Short-term memory performance and metamemory judgments in preschool and early school-age children: A quantitative and qualitative analysis. Cognition, Brain & Behavior, 12(1), 71–101.
  • Viterbori, P., Usai, M. C., Traverso, L. & de Franchis, V. (2015). How preschool executive functioning predicts several aspects of math achievement in Grades 1 and 3: A longitudinal study. Journal of Experimental Child Psychology, 140, 38–55. http://dx.doi.org/10.1016/j.jecp.2015.06.014
  • Watts, T. W., Duncan, G. J., Siegler, R. S. & Davis-Kean, P. E. (2014). What’s past is prologue: Relations between early mathematics knowledge and high school achievement. Educational Researcher, 43, 352–360. http://dx.doi.org/10.3102/0013189X14553660
  • Wechsler, D. (2005). Escala de Inteligencia de Wechsler para niños (WISC-IV). Madrid: TEA Ediciones.
  • Whitehurst, G. J. & Lonigan, C. J. (2003). Get ready to read! Screening tool. New York, NY: National Center for Learning Disabilities.
  • Worell, J. & Goodheart, C. (2006). Handbook of Girls’ and Women’s Psychological Health. New York. NY: Oxford University Press.