Individual differences in general and specifi c cognitive precursors in early mathematical learning

  1. Estíbaliz Aragón 1
  2. Gamal Cerda 2
  3. Cándida Delgado 1
  4. Manuel Aguilar 1
  5. José I. Navarro
  1. 1 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

  2. 2 Universidad de Concepción
    info

    Universidad de Concepción

    Concepción, Chile

    ROR https://ror.org/0460jpj73

Journal:
Psicothema

ISSN: 0214-9915 1886-144X

Year of publication: 2019

Volume: 31

Issue: 2

Pages: 156-162

Type: Article

More publications in: Psicothema

Abstract

Background: The acquisition of mathematical abilities is associated not only with several academic aptitudes but also with the development of particular cognitive skills. This study analysed the role of the general and specifi c domain precursors of informal mathematical thinking. Method: A total of 109 4-year-old children (M = 59.30 months; SD = 3.56) participated in the study, in which the participants’ informal math and cognitive variables were assessed. A stepwise regression model was calculated. Results: The complex inferential model evidenced the role of the three general-domain variables analysed, in addition to numerical estimation as a specifi c-domain variable. 48.5% of participants’ variability in informal mathematical thinking, evaluated with the TEMA-3 test, was explained by three of the general domain precursors: working memory, processing speed and receptive vocabulary; as well as by estimation, a specifi c-domain precursor. The model showed a higher explanatory statistical weight for boys (48.9%) than girls (37.5%). Conclusions: The model indicated that working memory and processing speed were the main predictors of informal mathematical thinking at the age of four. A joint remedial or preventative intervention, taking into account predictors of the specifi c and general domains, could be the optimal option to improve achievement in mathematics.

Funding information

This work was supported by the MINECO/FEDER Spanish government project PSI2015-63856-P; FONDECYT n. 1191064; FONDECYT n. 1160980 and CONICYT Basal Funding Program (FB0003) Chilean government.

Bibliographic References

  • Anobile, G., Arrighi, R., Castaldi, E., Grassi E, Pedonese, L., Moscoso, P., & Burr, D. (2017). Spatial but not temporal numerosity thresholds correlate with formal math skills in children. Developmental Psychology, 54(3), 458-473. doi: 10.1037/dev0000448
  • Alloway, T.P., & Alloway, R.G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20-29. doi: 10.1016/j.jecp.2009.11.003
  • Aragón, E., Navarro, J.I., Aguilar, M., Cerda, G., & García-Sedeño, M. (2016). Predictive model for early math skills based on structural equations. Scandinavian Journal of Psychology, 57(6), 489-494. doi: 10.1111/sjop.12317
  • Aunio, P., & Räsänen, P. (2016). Core numerical skills for learning mathematics in children aged five to eight years-A working model for educators. European Early Childhood Education Research Journal, 24(5), 684-704. doi: 10.1080/1350293X.2014.996424
  • Blankenship, T.L., Keith, K., Calkins, S.D., & Bell, M.A. (2018). Behavioral performance and neural areas associated with memory processes contribute to math and reading achievement in 6-year-old children. Cognitive Development, 45, 141-151. doi: 10.1016/j. cogdev.2017.07.002
  • Bleses, D., Makransky, G., Dale, P.S., Højen, A., & Ari, B.A. (2016). Early productive vocabulary predicts academic achievement 10 years later. Applied Psycholinguistics, 37(6), 1461-1476. doi: 10.1017/ S0142716416000060
  • Chow, J.C., & Ekholm, E. (2019). Language domains differentially predict mathematics performance in young children, Early Childhood Research Quarterly, 46, 179-186. doi: 10.1016/j.ecresq.2018.02.011
  • Chu, F.W., van Marle, K., & Geary, D.C. (2016). Predicting children’s reading and mathematics achievement from early quantitative knowledge and domain-general cognitive abilities. Frontiers in Psychology, 25, 7-775. doi: 10.3389/fpsyg.2016.00775
  • Clark, C.A.C., Nelson, J.M., Garza, J., Sheffi eld, T.D., Wiebe, S.A., & Espy, K.A. (2014). Gaining control: Changing relations between executive control and processing speed and their relevance for mathematics achievement over course of the preschool period. Frontiers in Psychology, 5, 107. doi: 10.3389/fpsyg.2014.00107
  • Costa, H.M., Nicholson, B., Donlan, C., & Van Herwegen, J. (2018). Low performance on mathematical tasks in preschoolers: the importance of domain-general and domain-specific abilities. Journal of Intellectual Disability Research, 62(4), 292-302. doi: 10.1111/jir.12465
  • De Smedt, B., & Gilmore, C.K. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108, 278-292. doi: 10.1016/j.jecp.2010.09.003
  • De Smedt, B., Noël, M.P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48-55. doi: 10.1016/j.tine.2013.06.001
  • Fawcett, A., Nicolson, R., Pinto, I. F., Corral, S., & Fernández, P. S. (2013). DST-J. Test para la Detección de la Dislexia en Niños [The Dyslexia Screening Test: Junior (DST-J)]. Madrid: TEA.
  • Ferreira, F.D.O., Wood, G., Pinheiro-Chagas, P., Lonnemann, J., Krinzinger, H., Willmes, K., & Haase, V.G. (2012). Explaining school mathematics performance from symbolic and non symbolic magnitude processing: Similarities and differences between typical and low-achieving children. Psychology & Neuroscience, 5(1), 37-46. doi: 10.3922/j.psns.2012.1.06
  • Fletcher, J.M., Lyon, G.R., Fuchs, L.S., & Barnes, M.A. (2018). Learning disabilities: From identification to intervention. New York, NY: Guilford Publications.
  • Fritz, A., Haase, V., & Räsänen, P. (Eds.) (2019). International Handbook of Mathematical Learning Difficulties. From the Laboratory to the Classroom. Cham: Switzerland: Springer.
  • Geary, D.C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47(6), 1539. doi: 10.1037/a0025510
  • Geary, D.C., Nicholas, A., Li, Y., & Sun, J. (2017). Developmental change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: An eight-year longitudinal study. Journal of Educational Psychology, 109(5), 680-693. doi.org/10.1037/edu0000159
  • Geary, D.C., & van Marle, K. (2016). Young children’s core symbolic and nonsymbolic quantitative knowledge in the prediction of later mathematics achievement. Developmental Psychology, 52(12), 21302144. doi: 10.1037/dev0000214
  • Ginsburg, H., Baroody, A.J., del Río, M.C.N., & Guerra, I.L. (2007). TEMA-3: Test de Competencia Matemática Básica [Test of Early Mathematics Ability-3]. Madrid, Spain: TEA.
  • González-Castro, P., Cueli, M., Cabeza, L., & Rodríguez, C. (2014). Improving basic math skills through integrated dynamic representation strategies. Psicothema, 26(3), 378-384. doi: 10.7334/ psicothema2013.284
  • Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the” Number Sense”: The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457. doi:10.1037/a0012682
  • Harvey, H.A., & Miller, G.E. (2017). Executive function skills, early mathematics, and vocabulary in head start preschool children. Early Education and Development, 28(3), 290-307. doi: 10.1080/10409289.2016.1218728
  • Hornung, C., Schiltz, C., Brunner, M., & Martin, R. (2014). Predicting first-grade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Frontiers in Psychology, 5, 272. doi: 10.3389/ fpsyg.2014.00272
  • Hubber, P.J., Gilmore, C., & Cragg, L. (2014). The roles of the central executive and visuospatial storage in mental arithmetic: A comparison across strategies. The Quarterly Journal of Experimental Psychology, 67(5), 936-954. doi: 10.1080/17470218.2013.838590
  • Iuculano, T., Tang, J., Hall, C.W.B., & Butterworth, B. (2008). Core information processing deficits in developmental dyscalculia and low numeracy. Developmental Science, 11, 669-680. doi: 10.1111/j.14677687.2008.00716.x
  • Lee, K., & Bull, R. (2016). Developmental changes in working memory, updating, and math achievement. Journal of Educational Psychology, 108(6), 869-882. doi: 10.1037/edu0000090
  • Mazzocco, M.M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82, 1224-1237. doi: 10.1111/j.14678624.2011.01608.x
  • McDonald, P.A., & Berg, D.H. (2017). Identifying the nature of impairments in executive functioning and working memory of children with severe difficulties in arithmetic. Child Neuropsychology, 24, 1047-1062. doi: 10.1080/09297049.2017.1377694
  • Meltzer, L. (2018). Executive function in education: From theory to practice (2nd edition). New York, NY: Guilford Publications.
  • Nosworthy, N., Bugden, S., Archibald, L., Evans, B., & Ansari, D. (2013). A two-minute paper-and-pencil test of symbolic and non-symbolic numerical magnitude processing explains variability in primary school children’s arithmetic competence. PloS one, 8(7), e67918. doi: 10.1371/journal.pone.0067918
  • Palejwala, M. H., & Fine, J. G. (2015). Gender differences in latent cognitive abilities in children aged 2 to 7. Intelligence, 48, 96-108. doi: 10.1016/j.intell.2014.11.004
  • Passolunghi, M.C., Lanfranchi, S., Altoè, G., & Sollazzo, N. (2015). Early numerical abilities and cognitive skills in kindergarten children. Journal of Experimental Child Psychology, 135, 25-42. doi: 10.1016/j. jecp.2015.02.001
  • Peake, C., Jiménez, J. E., & Rodríguez, C. (2017). Data-driven heterogeneity in mathematical learning disabilities based on the triple code model. Research in Developmental Disabilities, 71, 130-142. doi: 10.1016/j. ridd.2017.10.005
  • Peng, P., & Fuchs, D. (2016). A meta-analysis of working memory defi cits in children with learning difficulties: Is there a difference between verbal domain and numerical domain? Journal of Learning Disabilities, 49(1), 3-20. doi: 10.1177/0022219414521667
  • Previtali, P., de Hevia, M.D., & Girelli, L. (2010). Placing order in space: The SNARC effect in serial learning. Experimental Brain Research, 201, 599-605. doi: 10.1007/s00221-009-2063-3
  • Raghubar, K.P., Barnes, M.A., & Hecht, S.A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20(2), 110-122. doi: 10.1016/j.lindif.2009.10.005
  • Rousselle, L., & Noël, M.P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs. nonsymbolic number magnitude. Cognition, 102, 361-395. doi: 10.1016/j. cognition.2006.01.005
  • Ruan, Y., Georgiou, G.K., Song, S., Li, Y., & Shu, H. (2018). Does writing system infl uence the associations between phonological awareness, morphological awareness, and reading? A meta-analysis. Journal of Educational Psychology, 110(2), 180-202. doi: 10.1037/edu0000216
  • Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30, 34457. doi: 10.1111/j.2044-835X.2011.02048.x
  • Sella, F., Lucangeli, D., & Zorzi, M. (2018). Spatial and verbal routes to number comparison in young children. Frontiers in Psychology, 9, 776. doi: 10.3389/fpsyg.2018.00776
  • Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428-444. doi: 10.1111/ j.1467-8624.2004.00684.x
  • Xenidou-Dervou, I., De Smedt, B., van der Schoot, M., & van Lieshout, E.C. (2013). Individual differences in kindergarten math achievement: The integrative roles of approximation skills and working memory. Learning and Individual Differences, 28, 119-129. doi: 1016/j. lindif.2013.09.012
  • Watson, S.M., Gable, R.A., & Morin, L.L. (2016). The role of executive functions in classroom instruction of students with learning disabilities. International Journal of School and Cognitive Psychology, 3(167). doi: 10.4172/2469-9837.1000167
  • Wechsler, D. (2009). Wechsler preschool and primary scale of intelligenceIII. Madrid, Spain: TEA.
  • Zhu, M., Cai, D., & Leung, A.W. (2017). Number line estimation predicts mathematical skills: Difference in Grades 2 and 4. Frontiers in Psychology, 8, 1576. doi: 10.3389/fpsyg.2017.01576