Control del nivel de base fluvial en el rejuvenecimiento diferencial del sistema kárstico en yesos de Olvera-Zaframagón (NE Prov. Cádiz)

  1. Martínez Sánchez, Antonio
  2. Castillo López, Olegario
  3. Gracia Prieto, F Javier 1
  1. 1 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

Revue:
Cuaternario y geomorfología: Revista de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario

ISSN: 0214-1744

Année de publication: 2019

Volumen: 33

Número: 3-4

Pages: 53-78

Type: Article

DOI: 10.17735/CYG.V33I3-4.70826 DIALNET GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: Cuaternario y geomorfología: Revista de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario

Résumé

The present work deals with the relief evolution in an area of the northwestern sector of the Betic Ranges. It is characterized by extensive outcrops of Triassic clays and gypsums over which several isolated reliefs of Jurassic carbonate rocks stand out, like the Zaframagón Rock, West of Olvera village. The flattened summits of all these carbonate blocks delimit an old erosion surface sloping NW, very probably related to the progressive continentalization of the nearby, formerly marine, Guadalquivir Tertiary Depression during the Pliocene. The Triassic gypsums are presently affected by intense karstification in form of dolines and shafts, as well as other flat-bottomed depressions similar to poljes in the interfluve areas. Differential incision in the Guadamanil and Guadalporcún Rivers, located in the head of the Guadalete fluvial basin, seems to have conditioned the vertical development of karst forms in the region. The Guadalporcún River crosses the Zaframagón Rock through a short but deep gorge. The Rock has acted as an obstacle to the river incision and this has hampered its vertical erosion if compared to the one of the Guadamanil River. This differential incision has affected the development of absortion karst forms which drain to both rivers: dolines and shafts are deeper when draining to the Guadamanil River valley. The slopes of the valley are plenty of active and inactive springs, drawing a sequence of stepped outflow points, whose relative heights coincide with the general heights assigned to the Quaternary fluvial terrace levels regionally defined for the Guadalete River basin. All these aspects suggest a strong relationship between the Pleistocene vertical development of the Olvera-Zaframagón karst system and the behavior of the base level, both at regional and local levels.

Références bibliographiques

  • Ahnert, F.; Williams, P.W. (1997). Karst landform development in a three-dimensional theoretical model. Zeitschrift für Geomorphologie, SupplBd. 108, 63-80.
  • Audra, P.; Palmer, A.N. (2015). Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns. Acta Carsologica, 44/3, 315-348. https://doi.org/10.3986/ac.v44i3.1960
  • Azañón, J.M.; Galve, J.P.; Pérez-Peña, J.V.; Giaconia, F.; Carvajal, R.; Booth-Rea, G.; Jabaloy, A.; Vázquez, M.; Azor, A.; Roldán, F.J. (2015). Relief and drainage evolution during the exhumation of the Sierra Nevada (SE Spain): Is denudation keeping pace with uplift? Tectonophysics, 663, 19-32. https://doi.org/10.1016/j.tecto.2015.06.015
  • Calaforra, J.M. (1998). Karstología de yesos. Colec. Monografías Ciencia y Tecnología, Universidad de Almería e Instituto de Estudios Almerienses. Almería, 384 pp.
  • Calaforra, J.M.; Gázquez, F. (2017). Gypsum speleogenesis: a hydrogeological classification of gypsum caves. International Journal of Speleology, 46(2), 251-265. https://doi.org/10.5038/1827-806X.46.2.2125
  • Calaforra, J.M.; Pulido-Bosch, A. (1996). Some examples of gypsum karsts and the more important gypsum caves in Spain. International Journal of Speleology, 25 (3-4), 225-237. https://doi.org/10.5038/1827-806X.25.3.17
  • Calaforra, J.M.; Pulido-Bosch, A.; López-Chicano, M. (2002). Gypsum karst in the Betic Cordillera (South Spain). Carbonates and Evaporites, 17(2), 134-141. https://doi.org/10.1007/BF03176479
  • Cano, F.; Jerez Mir, L.: Remacha, E.; Maymo, A.; González Donoso, J.M.; Pérez Rojas, A. (1991) Memoria y Mapa Geológico de España, Escala 1:50.000, Hoja nº 1036 Olvera. IGME, Madrid, 28 pp.
  • Columbu, A.; De Waele, J.; Forti, P.; Montagna, P.; Picotti, V.; Pons-Branchu, E.; Hellstrom, J.; Bajo, P.; Drysdale, R. (2015). Gypsum caves as indicators of climate-driven river incision and aggradation in a rapidly uplifting region. Geology, 43(6), 539-542. https://doi.org/10.1130/G36595.1
  • Díaz del Olmo, F. (1989). Terrazas del Guadalete. Jornadas de Campo de Geografía Física (Bahía de Cádiz - Guadalete - Grazalema). Asociación de Geógrafos Españoles, Cádiz, 89-91.
  • Díaz del Olmo, F.; Vallespí, E.; Baena, R. y Recio, J.M. (1989). Terrazas pleistocenas del Guadalquivir occidental: geomorfología, suelos, paleosuelos y secuencia cultural. En: El Cuaternario de Andalucía occidental (F. Díaz Del Olmo y J. Rodríguez Vidal, coords.). AEQUA Monogr., 1, 33-42.
  • Durán, J.J.; López, J.; Vallejo, M. (eds.)(1999). El karst en Andalucía. Instituto Tecnológico GeoMinero de España, Madrid, 192 pp.
  • Durán, J.J.; Andreo, B.; Jiménez, P. (2008). Sistema Hundidero-Gato. En: El karst de Andalucía (J.M. Calaforra; J.A. Berrocal, eds.). Federación Andaluza de Espeleología y Junta de Andalucía, Córdoba, 216-223.
  • Farines, B.; Calvet, M.; Gunnell, Y. (2015). The summit erosion surfaces of the inner Betic Cordillera: Their value as tools for reconstructing the chronology of topographic growth in southern Spain. Geomorphology, 233, 92-111. https://doi.org/10.1016/j.geomorph.2014.11.019
  • Faust, D.; Wolf, D. (2017). Interpreting drivers of change in fluvial archives of the Western Mediterranean – A critical view. Earth-Science Reviews, 174, 53-83. https://doi.org/10.1016/j.earscirev.2017.09.011
  • Ford, D.C. (1998). Perspectives in karst hydrogeology and cavern genesis. Bulletin d’Hydrogeologie, 16, 9-29.
  • Ford, D.; Williams, P. (2007). Karst hydrogeology and geomorphology. John Wiley and Sons, Chichester, 562 pp. https://doi.org/10.1002/9781118684986
  • Giachetta, E.; Molin, P.; Scotti, V.N.; Faccenna, C. (2015). Plio-Quaternary uplift of the Iberian Chain (central-eastern Spain) from landscape evolution experiments and river profile modelling. Geomorphology, 246, 48-67. https://doi.org/10.1016/j.geomorph.2015.06.005
  • Giles, F.; Gutiérrez López, J.M.; Santiago, A.; Mata, E.; Aguilera, L. (1992). Secuencia paleolítica del valle del Guadalete. Primeros resultados. Revista de Arqueología, 135, 16-26.
  • Giles, F.; Gutiérrez López, J.M.; Mata, E.; Santiago, A.; Gracia, F.J. (1993). Secuencia fluvial y paleolítica del río Guadalete (Cádiz). Resultados de las investigaciones hasta 1991. VI Jornadas de Arqueología Andaluza, Huelva, 211-227.
  • The GIMP team (2017). GIMP, version 2.10.8, www.gimp.org, 1997-2019, accedido en 05.10.2017.
  • González-Castillo, L.; Galindo-Zaldívar, J.; Pedrera, A.; Martínez-Moreno, F.J.; Ruano, P. (2015). Shallow frontal deformation related to active continental subduction: structure and recent stresses in the westernmost Betic Cordillera. Terra Nova, 27, 114-121. https://doi.org/10.1111/ter.12138
  • Gracia, F.J. (2008). La campiña gaditana. En: Geomorfología de los espacios naturales protegidos de la provincia de Cádiz (F.J. Gracia, ed.). S.E.G., Univ. de Cádiz, 83-101.
  • Granger, D.E.; Fabel, D.; Palmer, A.N. (2001). Pliocene-Pleistocene incision of the Green River, Kentucky, determined from radioactive decay of cosmogenic 26Al and 10Be in Mammoth Cave sediments. Geological Society of America Bulletin, 113, 825-836. https://doi.org/10.1130/0016-7606(2001)113<0825:PPIOTG>2.0.CO;2
  • Gutiérrez, M. (2008). Gemorfología. Pearson Educación, Madrid, 898 pp.
  • Gutiérrez, M.; Gracia, F.J. (1997). Environmental interpretation and evolution of the Tertiary erosion surfaces in the Iberian Range (Spain). In: Palaeosurfaces: Recognition, Reconstruction and Palaeoenvironmental Interpretation (M. Widdoson, ed.). Geological Society of London Spec. Publ. 120, 147 - 158. https://doi.org/10.1144/GSL.SP.1997.120.01.10
  • Gutiérrez, F.; Ortí, F.; Gutiérrez, M.; Pérez-González, A.; Benito, G.; Gracia, F.J.; Durán, J.J. (2002). Paleosubsidence and active subsidence due to evaporite dissolution in Spain. Carbonates and Evaporites, 17, 121-133. https://doi.org/10.1007/BF03176478
  • Jennings, J.N. (1985). Karst Geomorphology. Blackwell, Oxford, 293 pp.
  • Klimchouk, A. (1996). The typology of gypsum karst according to its geological and geomorphological evolution. International Journal of Speleology, 25 (3-4), 49-60. https://doi.org/10.5038/1827-806X.25.3.4
  • Lechuga, I.; Gracia, F.J.; Suma, A.; De Cosmo, P. (2017). Evolución morfológica del río Gaduares y su relación con el sistema kárstico Hundidero-Gato (Sierra de Líbar, Málaga). Boletín de la Academia Malagueña de Ciencias, 19, 157-172.
  • Mabesoone, J.M. (1963). Les sediments pre-cuaternaires et Villafranchiens du bassin fluvial del Guadalete (prov. de Cadix). Estudios Geológicos, 19, 143-149.
  • Mantovani, F.; Gracia, F.J.; de Cosmo, P.D.; Suma, A. (2010). A new approach to landslide geomorphological mapping using the Open Source software in the Olvera area (Cadiz, Spain). Landslides, 7, 69-74. https://doi.org/10.1007/s10346-009-0181-4
  • Nicod, J. (1976). Karsts des gypses et des evaporites associées. Annales de Géographie, 471, 513-554. https://doi.org/10.3406/geo.1976.17497
  • Ojeda, J.; Díaz del Olmo, F.; Rubio, J.M. (1987). El macizo de Algodonales (Cádiz): Un modelo de karst mesomediterráneo. Gades, 15, 157-182.
  • Philip, H.; Bousquet, J. (1975). Resultat de l’etude microtectonique sur la compression quaternaire dans les Cordilleres Betiques orientales (Espagne). 3me. Reun.Sci. de la Terre. Montepellier. https://doi.org/10.2113/gssgfbull.S7-XVIII.3.711
  • Powell, J.W. (1875). Exploration of the Colorado River of the West. J. Willard Marriott Library, University of Utah, 291 pp.
  • QGIS Development Team (2016). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org
  • Reicherter, K.R.; Peters, G. (2005). Neotectonic evolution of the Central Betic Cordilleras (Southern Spain). Tectonophysics, 405, 191-212. https://doi.org/10.1016/j.tecto.2005.05.022
  • Rodríguez Fernández, J. (1982). El Mioceno del sector central de las Cordilleras Béticas. Tesis Doctoral, Universidad de Granada.
  • Rodríguez Vidal, J.; Gracia, F.J. (2004). Evolución geomorfológica del Sur de Iberia durante el Neógeno y el Cuaternario. En: Miscelánea en homenaje a Emiliano Aguirre (E. Baquedano; S. Rubio, eds.). Zona Arqueológica, Museo Arqueológico Regional de Alcalá de Henares, 4 (1), Geología, 124-133.
  • Roldán, F.J.; Borrero, J. (1988). Memoria y mapa geológico de Carmona, Hoja nº 985. Mapa geológico de España, E. 1:50.000. IGME, Madrid, 28 pp. + 1 mapa.
  • Ruiz-Constán, A.; Stich, D.; Galindo-Zaldívar, J.; Morales, J. (2009). Is the northwestern Betic Cordillera mountain front active in the context of the convergent Eurasia-Africa plate boundary? Terra Nova, 21, 352-359. https://doi.org/10.1111/j.1365-3121.2009.00886.x
  • Ruiz-Constán, A.; Pedrera, A.; Galindo-Zaldívar, J.; Stich, D.; Morales, J. (2012). Recent and active tectonics in the western part of the Betic Cordillera. Journal of Iberian Geology, 38, 161-174. https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39211
  • Sauro, U. (1996). Geomorphological aspects of gypsum karst areas with special emphasis on exposed karst. International Journal of Speleology, 25 (3-4), 105-114. https://doi.org/10.5038/1827-806X.25.3.8
  • Schumm, S.A. (1979). Geomorphic thresholds: the concept and its applications. Transactions of Institute of British Geographers, 4, 485-515. https://doi.org/10.2307/622211
  • Selby, M.J. (1985). Earth’s Changing Surface. Clarendon Press, Oxford, 607 pp.
  • Strahler, A.N. (1957). Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union, 38 (6), 913-920. https://doi.org/10.1029/TR038i006p00913
  • Suma, A.; Gracia, F.J.; De Cosmo, P.D. (2009). Gypsum karst in the Olvera Area (Cádiz province, Andalusia, Spain). 17th International Karstological School “Classical Karst”, Posstojna, 73-79.
  • Thomas, F.; Godard, V.; Bellier, O.; Shabanian, E.; Ollivier, V.; Benedetti, L.; Rizza, M.; Espurt, N.; Guillou, V.; Hollender, F.; Molliex, S. y el grupo ASTER (2017). Morphological control son the dynamics of carbonate landscapes under a mediterranean climate. Terra Nova, 29, 173-182. https://doi.org/10.1111/ter.12260
  • Thorn, C.E. (1988). An introduction to theoretical geomorphology. Unwin Hyman, Boston, 247 pp. https://doi.org/10.1007/978-94-010-9441-2
  • UAB (2019). Atlas Climático Digital de la Península Ibérica. Departamento de Biología Animal, Vegetal i Ecología, Departamento de Geografía. Universidad Autónoma de Barcelona. (http://www.opengis.uab.es/wms/iberia/mms/index.htm)
  • Viguier, C. (1974). Le Néogène de l’Andaloussie nord-occidentale (Espagne). Histoire géologique du “Bassin du Bas-Guadalquivir”. Th. d’Etat, Université de Bordeaux, 450 pp.
  • White, W.B. (1988). Geomorphology and hydrology of karst terrains. Oxford University Press, New York, 464 pp.
  • Wolf, D.; Seim, A.; Faust, D. (2014). Fluvial system response to external forcing and human impact – Late Pleistocene and Holocene fluvial dynamics of the lower Guadalete River in western Andalucía (Spain). Boreas, 43, 422-429. https://doi.org/10.1111/bor.12044
  • Womack, W.R.; Schumm, S.A. (1977). Terraces of Douglas Creek, northwestern Colorado: an example of episodic erosion. Geology, 5, 72-76. https://doi.org/10.1130/0091-7613(1977)5<72:TODCNC>2.0.CO;2