Modificaciones de la microestructura y la capa pasiva de la aleación 2024-T3 Al-Cu durante una limpieza química empleada en la industria aeroespacial

  1. Alba-Galvín, Juan J. 1
  2. Bethencourt, Manuel 2
  3. Botana, Francisco J. 1
  4. González-Rovira, Leandro 1
  5. Sánchez-Amaya, José M. 1
  1. 1 Departamento de Ciencia de Materiales e Ingeniería Metalúrgica y Química Inorgánica. Escuela Superior de Ingeniería, Universidad de Cádiz
  2. 2 Departamento de Ciencia de Materiales e Ingeniería Metalúrgica y Química Inorgánica. Facultad de Ciencias de Mar y Ambientales-Instituto de Investigaciones Marinas (INMAR), Universidad de Cádiz
Revista:
Revista de metalurgia

ISSN: 0034-8570

Año de publicación: 2019

Volumen: 55

Número: 2

Páginas: 144

Tipo: Artículo

DOI: 10.3989/REVMETALM.144 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista de metalurgia

Resumen

Se han investigado los efectos de un pretratamiento superficial empleado en el sector aeroespacial sobre la aleación 2024-T3 Al-Cu antes de la generación de recubrimientos por conversión química. Estos pretratamientos influyen en las fases metálicas, que desempeñan un papel clave en el desarrollo de nuevos recubrimientos de conversión sin cromo y en la susceptibilidad a la corrosión localizada en medios que contienen cloruros. El pretratamiento estudiado consta de dos etapas alcalinas y una ácida. La microscopía electrónica de barrido reveló que después del proceso completo, las fases Al(Cu,Mg) se eliminaban parcial o totalmente mediante desaleación y su posterior enriquecimiento de cobre, mientras que solo se atacó la matriz de aluminio que rodeaba las fases Al(Cu,Fe,Mn,Si). El análisis electroquímico reveló el viraje a catódico de las fases Al(Cu,Mg) que aún permanecen en la superficie mientras que la fases Al(Cu,Fe,Mn,Si) presentaron un mayor potencial de corrosión que la matriz de aluminio. Por el contrario, ninguna de estas fases se vio afectada cuando se emplearon únicamente las dos etapas alcalinas. Identificados los procesos que tienen lugar cuando la aleación es sometida a un pretratamiento superficial, es posible diseñar sistemas de protección alternativos a los cromatos.

Información de financiación

Este proyecto ha sido financiado por el Ministerio de Econom?a, Industria y Competitividad/ Programa FEDER (Proyecto MAT2014-60857-R).

Financiadores

Referencias bibliográficas

  • Aballe, A., Bethencourt, M., Botana, F.J., Marcos, M., Rodríguez, M.A. (1998). Seguimiento de la corrosión de la aleación AA2024 en disoluciones de NaCl mediante la medida del ruido electroquímico. Rev. Metal. 34 (Nº Ext.), 42-46. https://doi.org/10.3989/revmetalm.1998.v34.iExtra.705
  • Bethencourt, M., Botana, F.J., Cano, M.J., Marcos, M., Sánchez-Amaya, J.M., González-Rovira, L. (2009). Behaviour of the alloy AA2017 in aqueous solutions of NaCl. Part I: Corrosion mechanisms. Corros. Sci. 51 (3), 518-524. https://doi.org/10.1016/j.corsci.2008.12.027
  • Bethencourt, M., Botana, F.J., Cano, M.J., Gonzalez-Rovira, L., Marcos, M., Sánches-Amaya, J.M. (2012). Protection by Thermal and Chemical Activation with Cerium Salts of the Alloy AA2017 in Aqueous Solutions of NaCl. Metall. Mater. Trans. A. 43 (1), 182-194. https://doi.org/10.1007/s11661-011-0858-x
  • Boag, A., Hughes, A.E., Wilson, N.C., Torpy, A., MacRae, C.M., Glenn, A.M., Muster, T.H. (2009). How complex is the microstructure of AA2024-T3?. Corros. Sci. 51 (8), 1565-1568. https://doi.org/10.1016/j.corsci.2009.05.001
  • Boag, A., Taylor, R.J., Muster, T.H., Goodman, N., McCulloch, D., Ryan, C., Rout, B., Jamieson, D., Hughes, A.E. (2010). Stable pit formation on AA2024-T3 in a NaCl environment. Corros. Sci. 52 (1), 90-103. https://doi.org/10.1016/j.corsci.2009.08.043
  • Cerezo, J., Taheri, P., Vandendael, I., Posner, R., Lill, K., de Wit, J.H.W., Mol, J.M.C., Terryn, H. (2014). Influence of surface hydroxyls on the formation of Zr-based conversion coatings on AA6014 aluminum alloy. Surf. Coat. Tech. 254, 277-283. https://doi.org/10.1016/j.surfcoat.2014.06.030
  • DeRose, J.A., Suter, T., Balkowiec, A., Michalski, J., Kurzydlowski, K.J., Schmutz, P. (2012). Localised corrosion initiation and microstructural characterisation of an Al 2024 alloy with a higher Cu to Mg ratio. Corros. Sci. 55, 313-325. https://doi.org/10.1016/j.corsci.2011.10.035
  • Dimitrov, N., Mann, J.A., Vukmirovic. M., Sieradzki. K. (2000). Dealloying of Al2CuMg in Alkaline Media. J. Electrochem. Soc. 147 (9), 3283-3285. https://doi.org/10.1149/1.1393896
  • Eichinger, E., Osborne. J., Van Cleave, T. (1997). Hexavalent chromium elimination: An aerospace industry progress report. Met. Finish 95 (3), 36-41. https://doi.org/10.1016/S0026-0576(97)86771-2
  • Gao, M., Feng, C.R., Wei, R.P. (1998). An Analytical electron microscopy study of constituent particles in commercial 7075-T6 and 2024-T3 Alloys. Metall. Mater. Tans. A. 26 (4), 1145-1151. https://doi.org/10.1007/s11661-998-0240-9
  • González Fernández, J.A. (1989). Control de la Corrosion. Estudio y medida por técnicas electroquímicas, Editorial CSIC, Madrid.
  • Glenn, A.M., Hughes, A.E., Muster, T.H., Lau, D., Wilson, N.C., Torpy, A., MacRae, C.M., Ward, J. (2013). Investigation into the influence of carbon contamination on the corrosion behaviour of Aluminum microelectrodes and AA2024-T32013. J. Electrochem. Soc. 160 (3), 119-127. https://doi.org/10.1149/2.047303jes
  • Guillaumin, V., Mankowski, G. (1998). Localized corrosion of 2024 T351 aluminium alloy in chloride media. Corros. Sci. 41 (3), 421-438. https://doi.org/10.1016/S0010-938X(98)00116-4
  • Guo. Y., Frankel, G.S. (2012). Characterization of trivalent chromium process coating on AA2024-T3. Surf. Coat. Tech. 206 (19-20), 3895-3902. https://doi.org/10.1016/j.surfcoat.2012.03.046
  • Harvey, T.G. (2013). Cerium-based conversion coatings on aluminium alloys: a process review. Corros. Eng. Sci. Techn. 48 (4), 248-269. https://doi.org/10.1179/1743278213Y.0000000089
  • Hughes, A.E., Harvey, T.G., Nikpour, T., Muster, T.H., Hardin, S.G. (2005). Non-chromate deoxidation of AA2024-T3 using Fe(III)-HF-HNO3. Surf. Interface Anal. 37 (1), 15-23. https://doi.org/10.1002/sia.1998
  • I+D+P-072 (2009). Cleaning and pickling of aluminium and its alloys. Airbus Specification, Last revision: May 2009. https://w13.airbus.com/airbussupply.
  • Jones, M.J., Heurtier, P., Desrayaud, C., Montheillet, F., Allehaux, D., Driver, J.H. (2005). Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy. Scripta Mater. 52 (8), 693-697. https://doi.org/10.1016/j.scriptamat.2004.12.027
  • Kendig, M.W., Buchheit, R.G. (2003). Corrosion inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings. Corrosion 59 (5), 379-400. https://doi.org/10.5006/1.3277570
  • Kulinich, S.A., Akhtar, A.S. (2012). On Conversion Coating Treatments to Replace Chromating for Al Alloys: Recent Developments and Possible Future Directions. Russ. J. Non-Ferr. Met. 53 (2), 176-203. https://doi.org/10.3103/S1067821212020071
  • Lacroix, L., Ressier, L., Blanc, C., Mankowski, G. (2008). Combination of AFM, SKPMF and SIMD to study the corrosion behaviour of S-phase particles in AA2024-T351. J. Electrochem. Soc. 155 (4), 131-137. https://doi.org/10.1149/1.2833315
  • Li. L., Desouza, A.L., Swaing, G.M. (2014). Effect of deoxidation pretreatment on the corrosion inhibition provided by a trivalent chromium process (TCP) conversion coating on AA2024-T3. J. Electrochem. Soc. 161 (5), 246-253. https://doi.org/10.1149/2.031405jes
  • Moffitt, C.E., Wieliczka, D.M., Yasuda, H.K. (2001). An XPS study of the elemental enrichment on aluminium alloy surfaces from chemical cleaning. Surf. Coat. Tech. 137 (2-3), 188-196. https://doi.org/10.1016/S0257-8972(00)01121-X
  • Montemor, M.F. (2014). Functional and smart coatings for corrosion protection: A review of recent advances. Surf. Coat. Tech. 258, 17-37. https://doi.org/10.1016/j.surfcoat.2014.06.031
  • Nieves, C., Remolina, E.N., Hernández, C.A., Rueda, L.M., Coy, A.E., Viejo, F. (2017). Síntesis, caracterización y evaluación de la resistencia a la corrosión de recubrimientos híbridos Sol-Gel base TEOS/MPS sobre la aleación AA2050-T8. Rev. Metal. 53 (4), e106. https://doi.org/10.3989/revmetalm.106
  • Obispo, H.M., Murr, L.E., Arrowood, R.M., Trillo, E.A. (2000). Copper deposition during the corrosion of aluminum alloy 2024 in sodium chloride solutions. J. Mater. Sci. 35 (14), 3479-3495. https://doi.org/10.1023/A:1004840908494
  • Osborne, J.H. (2001). Observations on chromate conversion coatings from a sol-gel perspective. Prog. Org. Coat. 41 (4), 280-286. https://doi.org/10.1016/S0300-9440(01)00143-6
  • Pinc, W., Geng, S., O'Keefe, M., Fahrenholtz, W., O'Keefe, T. (2009). Effects of acid and alkaline based surface preparations on spray deposited cerium based conversion coatings on Al 2024-T3. Appl. Surf. Sci. 255 (7), 4061-4065. https://doi.org/10.1016/j.apsusc.2008.10.110
  • Qi, J.-T., Hashimoto, T., Walton, J.R., Zhou, X., Skeldon, P., Thompson, G.E. (2015). Trivalent chromium conversion coating formation on aluminium. Surf. Coat. Tech. 280, 317-329. https://doi.org/10.1016/j.surfcoat.2015.09.024
  • Qi, J., Nemcova, A., Walton, J.R., Zhou, X., Skeldon, P., Thompson, G.E. (2016). Influence of pre- and post-treatments on formation of a trivalent chromium conversion coating on AA2024 alloy. Thin. Solid. Films 616, 270-278. https://doi.org/10.1016/j.tsf.2016.08.044
  • Rayner-Canham, G., (2000). Química Inorgánica Descriptiva, Pearson, Nueva York.
  • Strohmeier, B.R. (1990). An ESCA method for determinaning the oxide thickness on aluminium alloy. Surf. Interface. Anal. 15 (1), 51-56. https://doi.org/10.1002/sia.740150109
  • ?wiatowska-Mrowiecka, J., Zanna, S., Ogle, K., Marcus, P. (2008). Adsorption of 1,2-diaminoethane on ZnO thin films from p-xylene. Appl. Surf. Sci. 254 (17), 5530-5539. https://doi.org/10.1016/j.apsusc.2008.02.170
  • Tian, W., Li, S., Liu, J., Yu, M., Du, Y. (2017). Preparation of bimodal grain size 7075 aviation aluminum alloys and their corrosion properties. Chinese. J. Aeronaut. 30 (5), 1777-1788. https://doi.org/10.1016/j.cja.2017.06.001
  • Tiringer, U., Kovac, J., Milosev, I. (2017). Effects of mechanical and chemical pre-treatments on the morphology and composition of surfaces of aluminium alloys 7075-T6 and 2024-T3. Corros. Sci. 119, 46-59. https://doi.org/10.1016/j.corsci.2017.02.018
  • Toh, S.K., Hughes, A.E., McCulloch, D.G., duPlessis, J., Stonham, A. (2004). Characterization of non-Cr-based deoxidizers on Al alloy 7475-T7651. Surf. Interface. Anal. 36 (12), 1523-1532. https://doi.org/10.1002/sia.1938
  • Twite, R.L., Bierwagen, G.P. (1998). Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog. Org. Coat. 33 (2), 91-100. https://doi.org/10.1016/S0300-9440(98)00015-0
  • Viroulaud, R., Swiatowska, J., Seyeux, A., Zanna, S., Tardelli, J., Marcus, P. (2017). Influence of surface pretreatments on the quality of trivalent chromium process coatings on aluminum alloy. Appl. Surf. Sci. 423, 927-938. https://doi.org/10.1016/j.apsusc.2017.06.246
  • Yasakau, K.A., Zheludkevich, M.L., Lamaka, S.V., Ferreira, M.G.S. (2006). Mechanism of Corrosion Inhibition of AA2024 by Rare-Earth Compounds. J. Phys. Chem. B. 110 (11), 5515-5528. https://doi.org/10.1021/jp0560664 PMid:16539491
  • Zhang, X., Zhou, X., Hashimoto, T., Liu, B. (2017). Localized corrosion in AA2024-T351 aluminium alloy: Transition from intergranular corrosion to crystallographic pitting. Mater. Charact. 130, 230-236. https://doi.org/10.1016/j.matchar.2017.06.022
  • Zhou, X., Luo, C., Hashimoto, T., Hughes, A.E., Thompson, G.E. (2012). Study of localized corrosion in AA2024 aluminium alloy using electron tomography. Corros. Sci. 58, 299-306. https://doi.org/10.1016/j.corsci.2012.02.001
  • Zhu, D., Van Ooij, W.J. (2003). Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodiumchloride solution. Part 2: mechanism for corrosion protection. Corros. Sci. 45 (10), 2177-2197. https://doi.org/10.1016/S0010-938X(03)00061-1