Cinéticas de crecimiento y consumo de nutrientes de microalgas en aguas residuales urbanas con diferentes niveles de tratamiento

  1. García Gozalbes, César Carlos 1
  2. Arbib, Zouhayr 2
  3. Perales Vargas-Machuca, José Antonio 1
  1. 1 Universidad de Cádiz, España
  2. 2 Aqualia, España
Revista:
Tecnología y Ciencias del Agua

ISSN: 2007-2422

Año de publicación: 2015

Volumen: 6

Número: 1

Páginas: 49-68

Tipo: Artículo

Otras publicaciones en: Tecnología y Ciencias del Agua

Resumen

El objetivo principal de este trabajo ha sido el estudio de la velocidad de crecimiento y de consumo de nitrógeno y fósforo de un bloom de microalgas cultivadas en aguas residuales urbanas con diferente nivel y tipología de tratamiento. Para ello se han cultivado las microalgas por duplicado en discontinuo bajo condiciones controladas de temperatura, luz y aireación, en cuatro medios de ensayo, consistentes en cuatro aguas residuales: (1) salida de pretratamiento; (2) efluente de decantación secundaria; (3) efluente de un reactor anaerobio de flujo ascendente denominado UASB (Upflow Anaerobic Sludge Blanket), y finalmente, (4) mezcla de efluente del UASB y agua de secundario, todas de la misma estación depuradora de aguas residuales urbanas. La modelización cinética para el análisis de resultados con los modelos de Verhulst y el Photobiotreatment model indica una evolución temporal diferente de la concentración de biomasa, N y P total disuelto, respectivamente, en los diferentes medios de ensayo. La productividad es mayor en los ensayos con agua procedente del biorreactor UASB (0.094 g SS l-1 d-1). En este medio de cultivo, la velocidad de eliminación del nitrógeno no presenta diferencia con el resto de aguas residuales utilizadas en el ensayo, mientras que en el caso del fósforo, la eliminación es la menor de entre todos los medios estudiados.

Referencias bibliográficas

  • Anonymous (1991). CHN-900/CHNS-932 Elemental Analysers for Carbon, Hydrogen, Nitrogen, Sulfur and Oxygen.
  • Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Barragan, J., & Perales, J. A. (2013). Long Term Outdoor Operation of a Tubular Airlift Pilot Photobioreactor and a High Rate Algal Pond as Tertiary Treatment of Urban Wastewater. Ecological Engineering, 52, 143-153.
  • Barbosa, M. J., Hoogakker, J., & Wijffels, R. H. (2003). Optimisation of Cultivation Parameters in Photobioreactors for Microalgae Cultivation Using the A-Stat Technique. Biomolecular Engineering, 20(4-6), 115-123. Accessed October 24, 2013.
  • Benemann, J. R. (2009). Microalgal Biofuels: A Brief Introduction.
  • Brune, D. E. J., Lundquist, T., & Benemann, J. R. (2009). Microalgal Biomass for Greenhouse Gas Reductions; Potential for Replacement of Fossil-Fuels and Animal Feeds
  • Cabanelas, I. T. D., Ruiz, J., Arbib, Z., Alexandre Chinalia, F., Garrido Pérez, C., Rogalla, F., Andrade Nascimento, I., & Perales, J. A. (2013). Comparing the Use of Different Domestic Wastewaters for Coupling Microalgal Production and nutrient Removal. Bioresource Technology131, 429-436.
  • Dawson, C. J., & Hilton, J. (2011). Fertiliser Availability in a Resource-Limited World: Production and Recycling of Nitrogen and Phosphorus. Food Policy, 36, S14-S22. Accessed November 9, 2013.
  • De Pauw, N., Bruggeman, E., & Persoone, G. (1978). Research on the Tertiary Treatment of Swine Manure by Mass Culturing of Algae. Mitt. Internat. Verin. Limnol, 21, 490-506.EPA (2008). EPA Method 6010c (2000): Inductively coupled plasma-atomic emission spectrometry. Washington, DC: E. and A. D. (4304) Office of Science and Technology.
  • Fallahi, B., Hall, A. S., & Ragsdell, K. M. (1981). Application of the Generalized Reduced Gradient Method to Selected Mechanisms Synthesis Problems (49-56 pp.). In International Conference on Software Engineering. San Diego, California, USA.
  • Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a Raw Material for Biofuels Production. J. Ind. Microbiol. Biot., 36(2), 269-274.
  • Gray, N. F. (1989). Biology of Wastewater Treatment. Oxford: Oxford University Press Griffiths, M. J., & Harrison, S.T.L. (2009). Lipid Productivity as a Key Characteristic for Choosing Algal Species for Biodiesel Production. Journal of Applied Phycology, 21(5), 493-507.
  • Hecky, R. E., & Kilham, P. (1988). Nutrient Limitation of Phytoplankton in Freshwater and Marine Environments: A Review of Recent Evidence on the Effects of Enrichment. Limnology and Oceanography, 33, 796-822.
  • Heussler, P. (1985). Development and Results of Peruvian-German Microalgae Project. Ergebn. Limnil., 20, 1-8.
  • Kaplan, D., Richmond, A. E., Dubinsky, Z., & Aaronson, S. (1986). Algal Nutrition. In Crc Handbook of Microalgal Mass Culture, Richmond. Boca Raton: CRC Press.
  • Kennish, M. J., & De Jonge, V. N. (2012). Chemical Introductions to the Systems Diffuse and Nonpoint Source Pollution from Chemicals Nutrients Eutrophication (p. 315). In E.
  • McLusky, & D. Wolanski (Eds.). Treatise on Estuarine and Coastal Science Human-induced Problems (Uses and Abuses). Oxford: Elsevier.
  • Köthe, J., & Bitsch, R. (1992). Oxysolv Plus Microwave – A New Way for Sample Preparation. Fresenius’ Journal of Analytical Chemistry, 343(9-10), 717-718.
  • Larsdotter, K., Jansen, J. L. C., & Dalhammar, G. (2007). Biologically Mediated Phosphorus Precipitation in Wastewater Treatment with Microalgae. Environ. Technol., 28(9), 953-960.
  • Liang, Y. N., Sarkany, N.. & Cui, Y. (2009). Biomass and Lipid Productivities of Chlorella vulgaris under Autotrophic, Heterotrophic and Mixotrophic Growth Conditions. Biotechnol Lett., 31(7), 1043e9.
  • Mariappan, J., & Krishnamurty, S. (1996). A Generalized Exact Gradient Method for Mechanism Synthesis. Mechanism and Machine Theory, 31(4), 413-421.
  • Martin, C., Picard, G., & De la Noüe, J. (1985). Epuration Biologique du Lisier de Porc par Production de Biomasses D’algues Unicellulaires. Mircen J. Appl. Microbiol. Biotechnol., 11, 173-184.
  • Müller, R., & Weidemann, F. (1955). Die Bestimmung des Nitrats in Wasser. Jahrb. Wasserchem. Wasserreinigungs-technik. Verlag Chemie 12, 247-271.
  • Patel, A., Barrington, S., & Lefsrud, M. (2012). Microalgae for Phosphorus Removal and Biomass Production: A Six Species Screen for Dual-Purpose Organisms. GCB Bioenergy, 4(5), 485-495.
  • Peleg, M., Corradini, M. G., & Normand, M. D. (2007). The Logistic (Verhulst) Model for Sigmoid Microbial Growth Curves Revisited. Food Research International, 40, 808-818.
  • Qiang, H., Zarmi, Y., & Richmond, A. (1998). Combined Effects of Light Intensity, Light-Path and Culture Density on Output Rate of Spirulina Platensis (Cyanobacteria). European Journal of Phycology, 33, 165-171.
  • Quiroga, J. M., Perales, J. A., Romero, L. I., & Sales, D. (1999). Biodegradation Kinetics of Surfactants in Seawater. Chemosphere, 39, 1957-1969.
  • Ragsdell, K. M. (1975). On the Application of the Generalized Reduced Gradient Method to Mechanism Synthesis (pp. 405-410). World Congress on the Theory of Mach. and Mech. 4th. Avtomaticheskaya Svarka.
  • Rashid, N., Ur Rehman, M. S., Memon, S., Ur-Rahman, Z., Lee, K., & Han, J. (2013). Current Status, Barriers and Developments in Biohydrogen Production by Microalgae. Renewable and Sustainable Energy Reviews, 22, 571-579.
  • Ruiz, J., Álvarez-Díaz, P. D., Arbib, Z., Garrido-Pérez, C., Barragán, J., & Perales, J. A. (2011). Effect of Nitrogen and Phosphorus Concentration on their Removal Kinetic in Treated Urban Wastewater by Chlorella vulgaris. Int. J. Phytoremediation, 13(9), 884-896.
  • Ruiz, J., Álvarez-Díaz, P. D., Arbib, Z., Garrido-Pérez, C., Barragán, J., & Perales, J. A. (2013). Performance of a Flat Panel Reactor in the Continuous Culture of Microalgae in urban Wastewater: Prediction from a Batch Experiment. Bioresource Technology, 127, 456-463.
  • Ruiz, J., Arbib, Z., Álvarez-Díaz, P. D., Garrido-Pérez, C., Barragán, J., & Perales, J. A. (2012). Photobiotreatment Model (Phbt): A Kinetic Model for Microalgae Biomass Growth and Nutrient Removal in Wastewater. Environmental Technology, 34(8), 979-991.
  • Ruiz-Marin, A., Mendoza-Espinosa, L. G., & Stephenson, T. (2010). Growth and Nutrient Removal in Free and Immobilized Green Algae in Batch and Semi-Continuous Cultures Treating Real Wastewater. Bioresource Technology, 101, 58-64.
  • Samorì, G., Samori, C., Guerrini, F., & Pistocchi, R. (2013). Growth and Nitrogen Removal Capacity of Desmodesmus Communis and of a Natural Microalgae Consortium in a Batch Culture System in View of Urban Wastewater Treatment: Part I. Water Research, 47(2), 791-801.
  • Schnackenberg, J., Ikemoto, H., & Miyachi, S. (1996). Photosynthesis and Hydrogen Evolution under Stress Conditions in a CO2-Tolerant Marine Green Alga Chlorococcum littorale. Journal of Photochemistry and Photobiology B: Biology, 62, 34-59.
  • Shelef, G., Azov, Y., Moraine, R., & Oron, G. (1980). Algal Mass Production as an integral Part of a Wastewater Treatment and Reclamation System.In Algae Biomass.Amsterdam: Shelef&Soeder, Ed., Elsevier/North-Holland Biomedical Press.
  • Shelef, G., Moraine, R., & Oron, G. (1978). Photosynthetic Biomass Production from Sewage. Ergebn. Limnol., 11, 3-14.
  • Smith, V. H., & Schindler, D. W. (2009). Eutrophication Science: Where do We Go from Here? Trends Ecol. Evol., 24, 201-207.
  • Talbot, P., Thébault, J. M., Dauta, A., & De La Noüe, J. (1991). A Comparative Study and Mathematical Modeling of temperature, Light and Growth of Three Microalgae Potentially Useful for Wastewater Treatment. Water Research, 25(4), 465-472.
  • Tang, D., Han, W., Li, P., Miao, X., & Zhong, J. (2011). CO2Biofixation and Fatty Acid Composition of Scenedesmus obliquus and Chlorella pyrenoidosa in Response to Different CO2 Levels. Bioresource technology, 102(3), 3071-3076.
  • Trussel, R. P. (1972). The Percent of Un-Ionized Ammonia in Aqueous Ammonia Solutions at Different pH Levels and Temperatures. J. Fish. Res. Bd. Can., 29, 1505-1507.
  • Velan, M., & Saravanane, R. (2013). CO2 Sequestration and Treatment of Municipal Sewage by Microalgae, International Journal of Innovative Technology and Exploring Engineering. 2(5), 307-310.
  • Verhulst, P. F. (1838). Notice Sur la Loi que la Population Suit dans son Accroissement. Corres. Math. Phys., 10, 113-121.Walsh, S., & Diamond, D. (1995). Non-Linear Curve Fitting Using Microsoft Excel Solver. Talanta, 42, 561-572.
  • Wang, L., Wang, Y. K.,Chen, P., & Ruan, R. (2010). Semi-Continuouscultivationof Chlorella vulgaris for Treating Undigested and Digested Dairy Manures. Applied Bio-Chemistry and Biotechnology, 162, 2324-2332