Buckling design of submerged arches via shape parameterization

  1. Hernández‐Díaz, Alejandro Mateo 1
  2. Jiménez‐Alonso, Javier Fernando 2
  3. Muñoz, Andrés 1
  4. Sáez, Andrés 3
  1. 1 Polytechnic SchoolCatholic University of Murcia Murcia Spain
  2. 2 Department of Building Structures and Geotechnical EngineeringUniversity of Seville Seville Spain
  3. 3 Department of Continuum Mechanics and Structural AnalysisUniversity of Seville Seville Spain
  4. 4 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

Revista:
Computational and Mathematical Methods

ISSN: 2577-7408 2577-7408

Año de publicación: 2019

Volumen: 1

Número: 5

Tipo: Artículo

DOI: 10.1002/CMM4.1057 GOOGLE SCHOLAR

Otras publicaciones en: Computational and Mathematical Methods

Resumen

Several of the geometric solutions obtained from the funicular design of submerged plane arches reach their critical buckling loads under service conditions. Consequently, the arch geometry must be modified, and then the bending moment increases considerably. Previous works have shown that the funicular shape of a submerged arch is close to either a parabolic or an elliptical form (depending on the water depth, the axial compressive force, and the arch height). In this work, such funicular shape is approximated using a parametric function of these two conical forms. Following this parameterization, the arch shape is optimized via an evolutionary algorithm taking into account its geometrically nonlinear behavior. As a result, the optimized shape shows a significative reduction in the second‐order bending stresses, due to a redistribution of the internal forces along the arch length. These results may find interesting applications in the optimal structural design of, among others, recreational underwater installations.

Referencias bibliográficas

  • 10.1016/0020-7683(81)90019-6
  • 10.1016/0020-7403(83)90044-9
  • 10.1007/s00419-014-0825-2
  • 10.1061/(ASCE)0733-9445(2000)126:5(627)
  • 10.1061/(ASCE)0733-9445(2002)128:2(266)
  • 10.1061/(ASCE)0733-9445(2003)129:8(1087)
  • 10.1061/(ASCE)0733-9399(2003)129:1(120)
  • 10.1081/SME-120020290
  • 10.1061/(ASCE)0733-9445(2005)131:3(399)
  • 10.1016/S0020-7462(98)00050-X
  • 10.1061/(ASCE)0733-9399(2002)128:7(710)
  • 10.1016/j.proeng.2017.09.439
  • 10.1007/s00158-015-1261-9
  • Isaacson E, (1994), Analysis of Numerical Methods
  • Argüelles‐Alvarez R, (1996), Análisis de Estructuras. Teoría, Problemas y Programas
  • Zienckiewicz OC, (2000), The Finite Element Method: Solid Mechanics
  • ANSYS.Documentation for Release 15.0. ANSYS Inc and ANSYS Europe Ltd;2013.
  • 10.1016/j.engstruct.2012.11.037
  • López‐Perales JA, (2003), Modelo de Elementos Finitos para el Cálculo de Arcos. Validación en Estructuras Agroindustriales de Acero
  • Bathe KJ, (1996), Finite Element Procedures
  • 10.1002/cnm.887
  • 10.1016/0045-7825(80)90051-1
  • Levy R, (1995), Analysis of geometrically nonlinear structures
  • 10.1137/1.9781611970012
  • CEN Eurocode 2: Design of concrete structures—Part 1.https://www.phd.eng.br/wp-content/uploads/2015/12/en.1992.1.1.2004.pdfAccessed October 30 2017.
  • CEN Eurocode 3: Design of steel structures—Part 1 https://www.phd.eng.br/wp-/uploads/2015/12/en.1993.1.1.2005.pdf. Accessed October 30 2017.
  • Davis L, (1991), Handbook of Genetic Algorithms
  • 10.1007/b98874
  • MATLAB.http://www.mathworks.com/. Accessed October 30 2017.