Concordancia entre las ecuaciones «Chronic Kidney Disease Epidemiological Collaboration» y «Modification of Diet in Renal Disease» con la «Berlin Initiative Study» para estimar la función renal en las personas mayores

  1. J. Escribano-Serrano 23
  2. C. Casto-Jarillo 34
  3. E. Berruguilla-Pérez 35
  4. M. González-Borrachero 6
  5. J.D. Santotoribio 7
  6. C. Cañavate-Solano 7
  7. M.M. Calero-Ruiz 13
  8. A. Michán-Doña 38
  1. 1 UGC Laboratorio, Hospital Puerta del Mar, Cádiz, España
  2. 2 Unidad de Gestión Clínica (UGC) San Roque, Grupo de Diabetes SEMERGEN, San Roque, Cádiz, España
  3. 3 Grupo GERVA, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, España
  4. 4 UGC Laboratorio, Hospital La Línea de la Concepción, Cádiz, España
  5. 5 UGC Laboratorio, Hospital Punta Europa, Algeciras Cádiz, España
  6. 6 UGC Laboratorio, Hospital Universitario de Jerez de la Frontera, Cádiz, España
  7. 7 UGC Laboratorio, Hospital de Puerto Real, Cádiz, España
  8. 8 UGC Medicina Interna, Hospital Universitario de Jerez de la Frontera, Universidad de Cádiz, España
Journal:
Semergen: revista española de medicina de familia

ISSN: 1138-3593

Year of publication: 2019

Issue: 7

Pages: 441-448

Type: Article

DOI: 10.1016/J.SEMERG.2019.02.012 DIALNET GOOGLE SCHOLAR

More publications in: Semergen: revista española de medicina de familia

Sustainable development goals

Abstract

Objective Estimated glomerular filtration rate (eGFR) is calculated routinely using creatinine-based formulas, but their reliability in the elderly is limited. The aim of this study was to analyse the concordance between the BIS1 equation which is specific for the elderly, and the usual CKD-EPI and MDRD-IDMS in a large population over 70 years of age. Material and methods Retrospective cross-sectional study in which the eGFR was calculated using BIS1, CKD-EPI and MDRD-IDMS equations based on gender, age, and creatinine data of 85,089 subjects (58.5% women, mean age 78 years [IQR 73-83]).The following statistics were carried out: Wilcoxon test, Bland-Altman graphic analysis, study of the concordance using the intraclass correlation coefficient (ICC), and comparison tables for the classification of CKD. Results The median of the eGFRs using BIS1 was 58 mL/min/1.73m2 (IQR 48-70), using CKD-EPI was 68 mL/min/1.73m2 (IQR 53-84), and using MDRD it was 68 mL/min/1.73m2 (IQR 53-82). The concordance between BIS1 and CKD-EPI (intraclass correlation coefficient = 0.87) was found to be acceptable. It was lower with MDRD (intraclass correlation coefficient = 0.81). A mean difference of 8 mL/min/1.73m2 (SD 2.6-18) was found BIS1 vs. CKD-EPI, and 10 mL/min/1.73m2 (SD 6-27) with BIS1 vs. MDRD, which was maintained when stratifying by gender and age groups. Conclusions Despite the acceptable statistical agreement, the eGFR obtained with the BIS1 equation is not interchangeable with CKD-EPI or with MDRD-IDMS. The BIS1 equation gives lower values than CKD-EPI, and classifies patients into a higher level of CKD, mainly when the eGFR is above 30 mL/min/1.73 m2.

Bibliographic References

  • S. Carville, D. Wonderling, P. Stevens, Guideline Development Group Early identification and management of chronic kidney disease in adults: summary of updated NICE guidance BMJ., 349 (2014), p. g4507 CrossRefView Record in ScopusGoogle Scholar
  • M. Gorostidi, R. Santamaría, R. Alcázar, G. Fernández-Fresnedo, J.M. Galcerán, M. Goicoechea, et al. Spanish Society of Nephrology document on KDIGO guidelines for the assessment and treatment of chronic kidney disease Nefrología, 34 (2014), pp. 302-316 View Record in ScopusGoogle Scholar
  • A. Martínez-Castelao, J.L. Górriz, J. Bover, J. Segura-de la Morena, J. Cebollada, J. Escalada, et al. [Consensus document for the detection and management of chronic kidney disease] Semergen., 40 (2014), pp. 441-459 ArticleDownload PDFView Record in ScopusGoogle Scholar
  • J.A. Vassalotti, R. Centor, B.J. Turner, R.C. Greer, M. Choi, T.D. Sequist, et al. Practical approach to detection and management of chronic kidney disease for the primary care clinician Am J Med., 129 (2016), pp. 153-162 e7 View Record in ScopusGoogle Scholar
  • A.S. Levey, J.P. Bosch, J.B. Lewis, T. Greene, N. Rogers, D. Roth A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation Modification of Diet in Renal Disease Study Group Ann Intern Med., 130 (1999), pp. 461-470 CrossRefView Record in ScopusGoogle Scholar
  • A.S. Levey, J. Coresh, T. Greene, J. Marsh, L.A. Stevens, J.W. Kusek, et al. Expressing the modification of diet in renal disease study equation for estimating glomerular filtration rate with standardized serum creatinine values Clin Chem., 53 (2007), pp. 766-772 CrossRefView Record in ScopusGoogle Scholar
  • A.S. Levey, L.A. Stevens, C.H. Schmid, Y.L. Zhang, A.F. Castro, H.I. Feldman, et al. A new equation to estimate glomerular filtration rate Ann Intern Med., 150 (2009), pp. 604-612 CrossRefView Record in ScopusGoogle Scholar
  • E.S. Schaeffner, N. Ebert, P. Delanaye, U. Frei, J. Gaedeke, O. Jakob, et al. Two novel equations to estimate kidney function in persons aged 70 years or older Ann Intern Med., 157 (2012), pp. 471-481 CrossRefView Record in ScopusGoogle Scholar
  • P. Martus, N. Ebert, M. van der Giet, O. Jakob, E.S. Schaeffner An efficient approach for glomerular filtration rate assessment in older adults Br J Clin Pharmacol., 78 (2014), pp. 384-392 CrossRefView Record in ScopusGoogle Scholar
  • X. Liu, J. Chen, C. Wang, C. Shi, C. Cheng, H. Tang, et al. Assessment of glomerular filtration rate in elderly patients with chronic kidney disease Int Urol Nephrol., 45 (2013), pp. 1475-1482 CrossRefView Record in ScopusGoogle Scholar
  • L. Koppe, A. Klich, L. Dubourg, R. Ecochard, A. Hadj-Aissa Performance of creatinine-based equations compared in older patients J Nephrol., 26 (2013), pp. 716-723 CrossRefView Record in ScopusGoogle Scholar
  • I.M. Alshaer, H.S. Kilbride, P.E. Stevens, G. Eaglestone, S. Knight, J.L. Carter, et al. External validation of the Berlin equations for estimation of GFR in the elderly Am J Kidney, 63 (2014), pp. 862-865 ArticleDownload PDFView Record in ScopusGoogle Scholar
  • E. Vidal-Petiot, J.-P. Haymann, E. Letavernier, F. Serrano, C. Clerici, J.-J. Boffa, et al. External validation of the BIS (Berlin Initiative Study)-1 GFR estimating equation in the elderly Am J Kidney, 63 (2014), pp. 865-867 ArticleDownload PDFView Record in ScopusGoogle Scholar
  • A. Corsonello, C. Pedone, S. Bandinelli, L. Ferrucci, R. Antonelli Incalzi Agreement between Chronic Kidney Disease Epidemiological Collaboration and Berlin Initiative Study equations for estimating glomerular filtration rate in older people: The Invecchiare in Chianti (Aging in Chianti Region) study Geriatr Gerontol Int. (2016) Google Scholar
  • L. Tarantini, F.A. McAlister, G. Barbati, J.A. Ezekowitz, G. Cioffi, P. Faggiano, et al. Chronic kidney disease and prognosis in elderly patients with cardiovascular disease: Comparison between CKD-EPI and Berlin Initiative Study-1 formulas Eur J Prev Cardiol., 23 (2016), pp. 1504-1513 CrossRefView Record in ScopusGoogle Scholar
  • F. Bustos-Guadaño, J.L. Martín-Calderón, J.J. Criado-Álvarez, R. Muñoz-Jara, A. Cantalejo-Gutiérrez, M.C. Mena-Moreno Glomerular filtration rate estimation in people older than 85: Comparison between CKD-EPI MDRD-IDMS and BIS1 equations Nefrología, 37 (2017), pp. 172-180 ArticleDownload PDFView Record in ScopusGoogle Scholar
  • M. Heras, M.T. Guerrero, M.J. Fernández-Reyes [The berlin initiative study equation: A useful and specific tool for estimating glomerular filtration rate in centenarian patients] Rev Espanola Geriatr Gerontol., 52 (2017), pp. 53-54 ArticleDownload PDFView Record in ScopusGoogle Scholar
  • M. Heras, M.J. Fernández-Reyes [New tools for the management of renal function in the elderly: Berlin Initiative Study equation and hematocrit, urea and gender formulae] Med Clin (Barc)., 146 (2016), pp. 450-454 ArticleDownload PDFView Record in ScopusGoogle Scholar
  • J.L. Carrasco, L. Jover [Statistical approaches to evaluate agreement] Med Clin (Barc)., 122 (Suppl 1) (2004), pp. 28-34 View Record in ScopusGoogle Scholar
  • J.M. Bland, D.G. Altman Statistical methods for assessing agreement between two methods of clinical measurement Lancet, 1 (1986), pp. 307-310 View Record in ScopusGoogle Scholar
  • E.S. Schaeffner, M. van der Giet, J. Gaedeke, M. Tölle, N. Ebert, M.K. Kuhlmann, et al. The Berlin initiative study: the methodology of exploring kidney function in the elderly by combining a longitudinal and cross-sectional approach Eur J Epidemiol, 25 (2010), pp. 203-210 CrossRefView Record in ScopusGoogle Scholar
  • A. Corsonello, C. Pedone, S. Bandinelli, L. Ferrucci, R. Antonelli Incalzi Agreement between Chronic Kidney Disease Epidemiological Collaboration and Berlin Initiative Study equations for estimating glomerular filtration rate in older people: The Invecchiare in Chianti (Aging in Chianti Region) study Geriatr Gerontol Int., 17 (2017), pp. 1559-1567 View Record in ScopusGoogle Scholar
  • P. Delanaye, N. Ebert, H. Pottel, G.F.R. Newer Estimating equations require validation in different populations Am J Kidney Dis., 70 (2017), p. 586 ArticleDownload PDFView Record in ScopusGoogle Scholar
  • A.S. Levey, H. Tighiouart, A.L. Simon, L.A. Inker Comparing Newer GFR Estimating Equations Using Creatinine and Cystatin C to the CKD-EPI Equations in Adults Am J Kidney Dis., 70 (2017), pp. 587-589 ArticleDownload PDFView Record in ScopusGoogle Scholar
  • A.S. Levey, H. Tighiouart, A.L. Simon, L.A. Inker In Reply to ‘Newer GFR Estimating Equations Require Validation in Different Populations’ Am J Kidney Dis., 70 (2017), pp. 586-587 ArticleDownload PDFView Record in ScopusGoogle Scholar
  • P. Delanaye, R.J. Glassock, M.E. de Broe Epidemiology of chronic kidney disease: think (at least) twice Clin Kidney J., 10 (2017), pp. 370-374 CrossRefView Record in ScopusGoogle Scholar
  • N.R. Robles, F.J. Felix, L. Lozano, I. Miranda, D. Fernandez-Berges, J.F. Macías The H.U.G.E. Formula (Hematocrit, Urea, Sex) for Screening Chronic Kidney Disease (CKD) in an Age-Stratified General Population J Nutr Health Aging, 19 (2015), pp. 688-692 Google Scholar