Aplicaciones de las técnicas de ADN ambiental al estudio y conservación de los recursos naturales

  1. Amador Huerta Vela 1
  2. Alejandro Centeno-Cuadros 1
  1. 1 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

Journal:
MoleQla: revista de Ciencias de la Universidad Pablo de Olavide

ISSN: 2173-0903

Year of publication: 2020

Issue: 40

Type: Article

More publications in: MoleQla: revista de Ciencias de la Universidad Pablo de Olavide

Sustainable development goals

Abstract

El ADN ambiental (environmental DNA, eDNA) es una metodología para analizar el material genético liberado por individuos que han transitado o habitan en el medio muestreado con el objetivo de identificar las especies a las que pertenece dicho material. El tipo de muestreo es no invasivo y permite analizar varios taxones simultáneamente partiendo de una misma muestra. Esta técnica, por lo general, identifica un mayor número de taxones y con menores tasas de error que las técnicas no moleculares. Desde la aparición de los secuenciadores masivos, el número de estudios relacionados con el eDNA ha aumentado exponencialmente debido a la relativa facilidad y abaratamiento de los costes asociados a la secuenciación. Las aplicaciones del eDNA siguen en aumento y diversificándose a través de diversas áreas de conocimiento asociadas a las Ciencias de la Vida. Este trabajo cuantifica y describe la influencia que ha tenido el eDNA en el estudio y conservación de la biodiversidad, prestando especial interés al estudio de ecosistemas antiguos, las interacciones planta-polinizador, el análisis de las dietas, la detección de especies invasoras, las respuestas a la contaminación o el análisis de la calidad del aire.

Bibliographic References

  • R. Nathan et al., “A movement ecology paradigm for unifying organismal movement research,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49. pp. 19052–19059, 09-Dec-2008.
  • A. J. Piaggio et al., “Detecting an elusive invasive species: a 11 diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA,” Mol. Ecol. Resour., vol. 14, no. 2, pp. 374–380, Mar. 2014.
  • C. P. Meyer and G. Paulay, “DNA barcoding: Error rates based on comprehensive sampling,” PLoS Biol., vol. 3, no. 12, pp. 1– 10, Nov. 2005.
  • J. Theuerkauf, S. Rouys, and C. Chatreau, “Mortality of radio‐tracked wild rats in relation to transmitter weight and resilience of transmitters in relation to their design,” J. R. Soc. New Zeal., vol. 37, no. 3, pp. 85–90, 2007.
  • P. D. N. Hebert, A. Cywinska, S. L. Ball, and J. R. DeWaard, “Biological identifications through DNA barcodes,” Proc. R. Soc. B Biol. Sci., vol. 270, no. 1512, pp. 313–321, Feb. 2003.
  • S. Ratnasingham and P. D. N. Hebert, “BOLD: The Barcode of Life Data System: Barcoding,” Mol. Ecol. Notes, vol. 7, no. 3, pp. 355–364, Jan. 2007.
  • K. Bohmann et al., “Environmental DNA for wildlife biology and biodiversity monitoring,” Trends in Ecology and Evolution, vol. 29, no. 6. pp. 358–367, 2014.
  • P. Taberlet, E. Coissac, M. Hajibabaei, and L. H. Rieseberg, “Environmental DNA,” Mol. Ecol., vol. 21, no. 8, pp. 1789– 1793, Apr. 2012.
  • K. M. Ruppert, R. J. Kline, and M. S. Rahman, “Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA,” Global Ecology and Conservation, vol. 17. Elsevier, p. e00547, 01-Jan-2019.
  • J. Handelsman, “Metagenomics: Application of Genomics to Uncultured Microorganisms,” Microbiol. Mol. Biol. Rev., vol. 68, no. 4, pp. 669–685, 2004.
  • M. R. Rondon et al., “Cloning the Soil Metagenome: a Strategy for Accessing the Genetic and Functional Diversity of Uncultured Microorganisms,” Appl. Environ. Microbiol., vol. 66, no. 6, pp. 2541–2547, 2000.
  • N. Valiere and P. Taberlet, “Urine collected in the field as a source of DNA for species and individual identification,” Mol. Ecol., vol. 9, no. 12, pp. 2150–2152, Dec. 2000.
  • N. Kurose, R. Masuda, and M. Tatara, “Fecal DNA Analysis for Identifying Species and Sex of Sympatric Carnivores: A Noninvasive Method for Conservation on the Tsushima Islands, Japan,” J. Hered., no. 6, pp. 688–697, 2005.
  • P. Henry and M. A. Russello, “Obtaining high-quality DNA from elusive small mammals using low-tech hair snares,” Eur. J. Wildl. Res., vol. 57, no. 3, pp. 429–435, Jun. 2011.
  • N. G. Yoccoz et al., “DNA from soil mirrors plant taxonomic and growth form diversity,” Mol. Ecol., vol. 21, no. 15, pp. 3647–3655, Aug. 2012.
  • P. Taberlet and G. Luikart, “Non-invasive genetic sampling and individual identification,” in Biological Journal of the Linnean Society, 1999, vol. 68, no. 1–2, pp. 41–55.
  • P. F. Thomsen and E. Willerslev, “Environmental DNA - An emerging tool in conservation for monitoring past and present biodiversity,” Biological Conservation, vol. 183. Elsevier, pp. 4– 18, 01-Mar-2015.
  • P. F. Thomsen et al., “Non-destructive sampling of ancient insect DNA,” PLoS One, vol. 4, no. 4, 2009.
  • G. Lear et al., “Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples,” N. Z. J. Ecol., 2018.
  • B. J. Wegleitner, C. L. Jerde, A. Tucker, W. L. Chadderton, and A. R. Mahon, “Long duration, room temperature preservation of filtered eDNA samples,” Conserv. Genet. Resour., vol. 7, no. 4, pp. 789–791, Dec. 2015.
  • D. Straube and A. Juen, “Storage and shipping of tissuesamples for DNA analyses: A case study on earthworms,” Eur. J. Soil Biol., vol. 57, pp. 13–18, Jul. 2013.
  • J. Spens et al., “Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter,” Methods Ecol. Evol., vol. 8, no. 5, pp. 635–645, 2017.
  • A. M. Nsubuga, M. M. Robbins, A. D. Roeder, P. A. Morin, C. Boesch, and L. Vigilant, “Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method,” Mol. Ecol., vol. 13, no. 7, pp. 2089–2094, May 2004.
  • M. M. Hartb, L. D. Bainarda, and J. N. Klironomosb, “Differential effect of sample preservation methods on plant and arbuscular mycorrhizal fungal DNA,” J. Microbiol. Methods, vol. Volume 82, 2010.
  • C. Wittwer, C. Nowak, D. A. Strand, T. Vrålstad, M. Thines, and S. Stoll, “Comparison of two water sampling approaches for eDNA-based crayfish plague detection,” Limnologica, vol. 70, pp. 1–9, May 2018.
  • L. S. Epp et al., “New environmental metabarcodes for analysing soil DNA: Potential for studying past and present ecosystems,” Mol. Ecol., vol. 21, no. 8, pp. 1821–1833, Apr. 2012.
  • A. J. Drummond et al., “Evaluating a multigene environmental DNA approach for biodiversity assessment,” Gigascience, vol. 4, no. 1, p. 46, Dec. 2015.
  • S. Shokralla, J. L. Spall, J. F. Gibson, and M. Hajibabaei, “Nextgeneration sequencing technologies for environmental DNA research,” Molecular Ecology, vol. 21, no. 8. pp. 1794–1805, 2012.
  • C. Qu and K. A. Stewart, “Evaluating monitoring options for conservation: comparing traditional and environmental DNA tools for a critically endangered mammal,” Sci. Nat., vol. 106, no. 3–4, p. 9, Apr. 2019.
  • J. Biggs et al., “Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus),” 2015.
  • K. Bohmann et al., “Environmental DNA for wildlife biology and biodiversity monitoring,” Trends in Ecology and Evolution, vol. 29, no. 6. Elsevier Current Trends, pp. 358–367, 01-Jun2014.
  • M. W. Pedersen et al., “A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa,” Quat. Sci. Rev., vol. 75, pp. 161–168, Sep. 2013.
  • G. F. Ficetola et al., “DNA from lake sediments reveals longterm ecosystem changes after a biological invasion,” Sci. Adv., vol. 4, no. 5, May 2018.
  • M. Bálint et al., “Environmental DNA Time Series in Ecology,” Trends in Ecology and Evolution, vol. 33, no. 12. Elsevier Ltd, pp. 945–957, 01-Dec-2018.
  • T. Jørgensen et al., “Islands in the ice: Detecting past vegetation on Greenlandic nunataks using historical records and sedimentary ancient DNA Meta-barcoding,” Mol. Ecol., vol. 21, no. 8, pp. 1980–1988, Apr. 2012.
  • J. H. Sonstebo et al., “Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate,” Mol. Ecol. Resour., vol. 10, no. 6, pp. 1009–1018, Nov. 2010.
  • J. Hawkins et al., “Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigating honey bee foraging preferences,” PLoS One, vol. 10, no. 8, Aug. 2015.
  • S. Boyer, S. D. Wratten, A. Holyoake, J. Abdelkrim, and R. H. Cruickshank, “Using Next-Generation Sequencing to Analyse the Diet of a Highly Endangered Land Snail (Powelliphanta 12 augusta) Feeding on Endemic Earthworms,” PLoS One, vol. 8, no. 9, Sep. 2013.
  • N. Guillerault, S. Bouletreau, A. Iribar, A. Valentini, and F. Santoul, “Application of DNA metabarcoding on faeces to identify European catfish Silurus glanis diet,” J. Fish Biol., vol. 90, no. 5, pp. 2214–2219, May 2017.
  • H. Vestheim and S. N. Jarman, “Blocking primers to enhance PCR amplification of rare sequences in mixed samples - A case study on prey DNA in Antarctic krill stomachs,” Front. Zool., vol. 5, 2008.
  • J. C. McInnes, R. Alderman, B. E. Deagle, M. A. Lea, B. Raymond, and S. N. Jarman, “Optimised scat collection protocols for dietary DNA metabarcoding in vertebrates,” Methods Ecol. Evol., vol. 8, no. 2, pp. 192–202, Feb. 2017.
  • E. Jakubavičiute, U. Bergström, J. S. Eklöf, Q. Haenel, and S. J. Bourlat, “DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem,” PLoS One, vol. 12, no. 10, Oct. 2017.
  • R. Kowalczyk et al., “Influence of management practices on large herbivore diet-Case of European bison in Białowieza Primeval Forest (Poland),” For. Ecol. Manage., vol. 261, no. 4, pp. 821–828, Feb. 2011.
  • W. A. Gerhard and C. K. Gunsch, “Metabarcoding and machine learning analysis of environmental DNA in ballast water arriving to hub ports,” 2019.
  • A. Ardura, A. Zaiko, J. L. Martinez, A. Samuiloviene, Y. Borrell, and E. Garcia-Vazquez, “Environmental DNA evidence of transfer of North Sea molluscs across tropical waters through ballast water,” J. Molluscan Stud., vol. 81, no. 4, pp. 495–501, 2015.
  • A. Zaiko, A. Samuiloviene, A. Ardura, and E. Garcia-Vazquez, “Metabarcoding approach for nonindigenous species surveillance in marine coastal waters,” Mar. Pollut. Bull., vol. 100, no. 1, pp. 53–59, Nov. 2015.
  • A. Zaiko, J. L. Martinez, J. Schmidt-Petersen, D. Ribicic, A. Samuiloviene, and E. Garcia-Vazquez, “Metabarcoding approach for the ballast water surveillance - An advantageous solution or an awkward challenge?,” Mar. Pollut. Bull., vol. 92, no. 1–2, pp. 25–34, Mar. 2015.
  • X. Pochon, N. J. Bott, K. F. Smith, and S. A. Wood, “Evaluating Detection Limits of Next-Generation Sequencing for the Surveillance and Monitoring of International Marine Pests,” PLoS One, vol. 8, no. 9, Sep. 2013.
  • C. Hatzenbuhler, J. R. Kelly, J. Martinson, S. Okum, and E. Pilgrim, “Sensitivity and accuracy of high-throughput metabarcoding methods for early detection of invasive fish species,” Sci. Rep., vol. 7, Apr. 2017.
  • L. M. Fletcher et al., “Bilge water as a vector for the spread of marine pests: a morphological, metabarcoding and experimental assessment,” Biol. Invasions, vol. 19, no. 10, pp. 2851–2867, Oct. 2017.
  • J. A. Darling and A. R. Mahon, “From molecules to management: Adopting DNA-based methods for monitoring biological invasions in aquatic environments,” Environ. Res., vol. 111, no. 7, pp. 978–988, Oct. 2011.
  • G. F. Ficetola et al., “Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data,” Mol. Ecol. Resour., vol. 15, no. 3, pp. 543–556, May 2015.
  • A. Lanzén, K. Lekang, I. Jonassen, E. M. Thompson, and C. Troedsson, “High-throughput metabarcoding of eukaryotic diversity for environmental monitoring of offshore oil-drilling
  • O. Laroche, S. A. Wood, L. A. Tremblay, J. I. Ellis, G. Lear, and X. Pochon, “A cross-taxa study using environmental DNA/RNA metabarcoding t
  • T. H. Bell et al., “Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny,” ISME J., vol. 8, no. 2, pp. 331– 343, Feb. 2014.
  • M. B. Smith et al., “Natural bacterial communities serve as quantitative geochemical biosensors,” MBio, vol. 6, no. 3, pp. 1–13, May 2015.
  • J. Pawlowski, P. Esling, F. Lejzerowicz, T. Cedhagen, and T. A. Wilding, “Environmental monitoring through protist nextgeneration sequencing metabarcoding: Assessing the impact of fish farming on benthic foraminifera communities,” Mol. Ecol. Resour., vol. 14, no. 6, pp. 1129–1140, Nov. 2014.
  • E. Dowle, X. Pochon, N. Keeley, and S. A. Wood, “Assessing the effects of salmon farming seabed enrichment using bacterial community diversity and high-throughput sequencing,” FEMS Microbiol. Ecol., vol. 91, no. 8, 2015.
  • H. Azarbad et al., “Microbial community composition and functions are resilient to metal pollution along two forest soil gradients,” FEMS Microbiol. Ecol., vol. 91, no. 1, 2015.
  • A. Durand, F. Maillard, J. Foulon, H. S. Gweon, B. Valot, and M. Chalot, “Environmental Metabarcoding Reveals Contrasting Belowground and Aboveground Fungal Communities from Poplar at a Hg Phytomanagement Site,” Microb. Ecol., vol. 74, no. 4, pp. 795–809, Nov. 2017.
  • F. Frontalini et al., “Assessing the effect of mercury pollution on cultured benthic foraminifera community using morphological and eDNA metabarcoding approaches,” Mar. Pollut. Bull., vol. 129, no. 2, pp. 512–524, Apr. 2018. [62] K. Kraaijeveld et al., “Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing,” Mol. Ecol. Resour., vol. 15, no. 1, pp. 8–16, Jan. 2015.
  • X. Tong et al., “High diversity of airborne fungi in the hospital environment as revealed by meta-sequencing-based microbiome analysis,” Sci. Rep., vol. 7, Jan. 2017. [64] E. Banchi et al., “DNA metabarcoding uncovers fungal diversity of mixed airborne samples in Italy,” PLoS One, vol. 13, no. 3, Mar. 2018.
  • C. Cao et al., “Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event,” Environ. Sci. Technol., vol. 48, no. 3, pp. 1499–1507, Feb. 2014.
  • K. Leontidou, C. Vernesi, J. De Groeve, F. Cristofolini, D. Vokou, and A. Cristofori, “DNA metabarcoding of airborne pollen: new protocols for improved taxonomic identification of environmental samples,” Aerobiologia (Bologna)., vol. 34, no. 1, pp. 63–74, Mar. 2018.
  • S. Boessenkool et al., “Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity,” Conserv. Biol., vol. 28, no. 2, pp. 446–455, 2014.
  • R. T. Richardson, C. Lin, J. O. Quijia, N. S. Riusech, K. Goodell, and R. M. Johnson, “Rank‐based characterization of pollen assemblages collected by honey bees using a multi‐locus metabarcoding approach,” Appl. Plant Sci., vol. 3, no. 11, p. 1500043, Nov. 2015.
  • R. T. Richardson, C.-H. Lin, D. B. Sponsler, J. O. Quijia, K. Goodell, and R. M. Johnson, “Application of ITS2 Metabarcoding to Determine the Provenance of Pollen Collected by Honey Bees in an Agroecosystem,” Appl. Plant Sci., vol. 3, no. 1, p. 1400066, Jan. 2015.
  • E. Bellemain et al., “Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic 13 permafrost,” Environ. Microbiol., vol. 15, no. 4, pp. 1176 –1189, Apr. 2013.
  • S. Boessenkool et al., “Blocking human contaminant DNA during PCR allows amplification of rare mammal species from sedimentary ancient DNA,” Mol. Ecol., vol. 21, no. 8, pp. 1806 – 1815, Apr. 2012.
  • S. Boessenkool et al., “Blocking human contaminant DNA during PCR allows amplification of rare mammal species from sedimentary ancient DNA,” Mol. Ecol., vol. 21, no. 8, pp. 1806 – 1815, Apr. 2012.
  • A. A. Coble, C. A. Flinders, J. A. Homyack, B. E. Penaluna, R. C. Cronn, and K. Weitemier, “eDNA as a tool for identifying freshwater species in sustainable forestry: A critical review and potential future applications,” Sci. Total Environ., vol. 649, pp. 1157 –1170, Feb. 2019.
  • J. A. Russell, B. Campos, J. Stone, E. M. Blosser, N. BurkettCadena, and J. L. Jacobs, “Unbiased Strain-Typing of Arbovirus Directly from Mosquitoes Using Nanopore Sequencing: A Field-forward Biosurveillance Protocol,” Sci. Rep., vol. 8, no. 1, Dec. 2018.