A Very Active α-Amylase and an Inhibitor-Based Control of Proteinases Are Key Features of Digestive Biochemistry of the Omnivorous Caribbean King Crab Maguimithrax spinosissimus

  1. Rodríguez-Viera, Leandro 1
  2. Montero-Alejo, Vivian 2
  3. Perdomo-Morales, Rolando 2
  4. Perera, Erick 4
  5. Mancera, Juan M. 3
  6. Chávez-Rodríguez, Lisette 1
  1. 1 Center for Marine Research, University of Havana, Havana, Cuba
  2. 2 Department of Biochemistry, Center for Pharmaceuticals Research and Development, Havana, Cuba
  3. 3 Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigacion Marina (INMAR), University of Cadiz, Campus de Excelencia Internacional del Mar (CEIMAR), Puerto Real, Cadiz, Spain
  4. 4 Nutrigenomics and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellon, Spain
Revista:
Journal of Evolutionary Biochemistry and Physiology

ISSN: 0022-0930 1608-3202

Año de publicación: 2020

Volumen: 56

Número: 6

Páginas: 550-564

Tipo: Artículo

DOI: 10.1134/S0022093020060083 GOOGLE SCHOLAR

Otras publicaciones en: Journal of Evolutionary Biochemistry and Physiology

Referencias bibliográficas

  • Johnston, D. and Freeman, J., Dietary preference and digestive enzyme activities as indicators of trophic resource utilization by six species of crab, Biol. Bull., 2005, vol. 208, no. 1, pp. 36–46.
  • Davie, P.J.F., Guinot, D., and Ng, P.K.L., Systematics and classification of Brachyura. Treatise on zoology–anatomy, taxonomy, biology, The Crustacea, 2015, vol. 9, pp. 1049–1130.
  • Brun, G. and Wojtowicz, M., A comparative study of the digestive enzymes in the hepatopancreas of Jonah crab (Cancer borealis) and rock crab (Cancer irroratus), Comp. Biochem. Physiol. B, 1976, vol. 53, pp. 387–391.
  • Smichi, N., Fendri, A., Zarai, Z., Bouchaala, E., Chérif, S., Gargouri, Y., and Miled, N., Lipolytic activity levels and colipase presence in digestive glands of some marine animals, Fish Physiol. Biochem., 2012, vol. 38, pp. 1449–1458.
  • Asaro, A., Paggi, R.A., De Castro, R., and Lopez-Mañanes, A.A., Amylase in the hepatopancreas of a euryhaline burrowing crab: characteristics and modulation, Turk. J. Zool., 2017, vol. 41, pp. 443–453.
  • Asaro, A., Martos-Sitcha, J.A., Martínez-Rodríguez, G., Mancera, J.M., and López Mañanes, A.A., In silico analysis and effects of environmental salinity in the expression and activity of digestive α-amylase and trypsins from the euryhaline crab Neohelice granulate, Can. J. Zool., 2017, vol. 96, pp. 127–139.
  • Karasov, W.H. and Douglas, A.E., Comparative digestive physiology, Compr. Physiol., 2013, vol. 3, no. 2, pp. 741–783. doi: 10.1002/cphy.c110054
  • Linton, S.M., Saborowski, R., Shirley, A.J., and Penny, J.A., Digestive enzymes of two brachyuran and two anomuran land crabs from Christmas Island, Indian Ocean, J. Comp. Physiol. B, 2014, vol. 184, no. 4, pp. 449–468. doi: 10.1007/s00360-014-0815-2
  • Hirche, H.J. and Anger, K., Digestive enzyme activities during larval development of Hyas araneus (Decapoda, Majidae), Comp. Biochem. Physiol. B, 1987, vol. 87, pp. 297–302.
  • Roitberg, B.D., Gillespie, D.R., Quiring, D.M., Alma, C.R., Jenner, W.H., Perry, J., Peterson, J.H., Salomon, M., and Van Laerhoven, S., The cost of being an omnivore: mandible wear from plant feeding in a true bug, Naturwiss., 2005, vol. 92, no. 9, pp. 431–434.
  • Poore, A.G.B., Ahyong, S.T., Lowry, J.K., and Sotka, E.E., Plant feeding promotes diversification in the Crustacea, Proc. Natl. Acad. Sci. USA, 2017. vol. 114, no. 33, pp. 8829–8834. doi: 10.1073/pnas.1706399114
  • Hultgren, K.M. and Stachowicz, J.J., Molecular phylogeny of the brachyuran crab superfamily Majoidea indicates close congruence with trees based on larval morphology, Mol. Phylogenet. Evol., 2008, vol. 48, pp. 986–996.
  • Windsor, A.M. and Felder, D.L., Molecular phylogenetics and taxonomic reanalysis of the family Mithracidae MacLeay (Decapoda: Brachyura: Majoidea), Invertebrate Systematics, 2014, vol. 28, no. 2, pp. 145–173.
  • Orensanz, J.M., Armstrong, J., Armstrong, D., and Hilborn, R., Crustacean resources are vulnerable to serial depletion–the multifaceted decline of crab and shrimp fisheries in the Greater Gulf of Alaska, Rev. Fish Biol. Fisheries, 1998, vol. 8, pp. 117–176.
  • Creswell, R.L., The cultivation of marine invertebrates indigenous to the Wider Caribbean Region: established culture techniques and research needs for crustacean, A Regional Shellfish Hatchery for the Wider Caribbean, 2010, p. 105.
  • Hurtado-Alarcón, J.C., Campos Campos, N.H., Bermúdez Tobón, A., and Márquez, E.J., Phylogeographic patterns in Maguimithrax spinosissimus (Decapoda: Mithracidae) from Colombian Caribbean, New Zealand J. Marine Freshwater Res., 2018, vol. 52, no. 1, pp. 118–137.
  • Humann, P., Deloach, N., and Wilk, L., Reef Creature Identification: Florida. Caribbean, Bahamas, New World Publications, Jacksonville, FL, 1992, vol. 328.
  • Butler, M.J. and Mojica, A.M., Herbivory by the Caribbean king crab on coral patch reefs, Mar. Biol., 2012. vol. 159, no. 12, pp. 2697–2706.
  • Wilber, D.H. and Wilber, T.P. Jr., The effects of holding space and diet on the growth of the West Indian spider crab Mithrax spinosissimus (Lamarck), J. Exp. Mar. Biol. Ecol., 1989, vol. 131, no. 3, pp. 215–222.
  • Wilber, D.H. and Wilber, T.P. Jr., The effects of holding space and diet on the growth of the West Indian spider crab Mithrax spinosissimus, J. Exp. Mar. Biol. Ecol., 1989, vol. 131, pp. 215–222.
  • Lancia, J.P., Fernandez-Gimenez, A., Bas, C., and Spivak, E., Adaptive differences in digestive enzyme activity in the crab Neohelice granulata in relation to sex and habitat, J. Crust. Biol., 2012, vol. 32, no. 6, pp. 940–948.
  • Serrano, A., Ontogenetic changes in the activity of chymotrypsin and carboxypeptidases A and B in mud crab, Scylla serrata, Isr. J. Aquacult-Bamid, 2013, vol. 65, pp. 1–6.
  • Wolcott, D.L. and O’Connor, N.J., Herbivory in crabs: adaptations and ecological considerations, Amer. Zoologist, 1992, vol. 32, pp. 370–381.
  • Perera, E., Rodriguez-Casariego, J., Rodriguez-Viera, L., Calero, J., Perdomo-Morales, R., and Mancera, J.M., Lobster (Panulirus argus) hepatopancreatic trypsin isoforms and their digestion efficiency, Biol. Bull., 2012, vol. 222, no. 2, pp. 158–170.
  • Hata, S., Azomi, K., and Yokosawa, H., Ascidian phenoloxidase: its release from hemocytes, isolation, characterization and physiological roles, Comp. Biochem. Physiol. B, 1998, vol. 119, pp. 769–776.
  • Bradford, M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.
  • Perera, E., Moyano, F.J., Díaz, M., Perdomo-Morales, R., Montero-Alejo, V., Alonso, E., Carrillo, O., and Galich, G.S., Polymorphism and partial characterization of digestive enzymes in the spiny lobster Panulirus argus, Comp. Biochem. Physiol. B, 2008, vol. 150, pp. 247–254.
  • Gella, F.J., Gubern, G., Vidal, R., and Canalias, F., Determination of total and pancreatic α-amylase in human serum with 2-chloro-4-nitrophenyl-α-D-maltotrioside as substrate, Clinica Chimica Acta, 1997, vol. 259, no. 1, pp. 147–160.
  • Perera, E. and Yúfera, M., Effects of soybean meal on digestive enzymes activity, expression of inflammation-related genes, and chromatin modifications in marine fish (Sparus aurata L.) larvae, Fish Physiol. Biochem., 2017, vol. 43, no. 2, pp. 563–578.
  • García-Carreño, F.L., Dimes, E.N., and Haard, F., Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors, Anal. Biochem., 1993, vol. 214, pp. 65–69.
  • Hanspal, J.S., Bushell, G.R., and Ghosh, P., Detection of protease inhibitors using substrate-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Anal. Biochem., 1983, vol. 132, no. 2, pp. 288–293.
  • Perdomo-Morales, R., Montero-Alejo, V., Corzo, G., Besada, V., Vega-Hurtado, Y., et al., The trypsin inhibitor panulirin regulates the prophenoloxidase-activating system in the spiny lobster Panulirus argus, J. Biol. Chem., 2013, vol. 288, no. 44, pp. 31867–31879.
  • Labouesse, J., and Gervais, M., Preparation of chemically defined ε N-acetylated trypsin, Eur. J. Biochem., 1967, vol. 2, pp. 215–223.
  • Galgani, F., Benyamín, Y., and Ceccaldi, H., Identification of digestive proteinasas of Penaeus kerathurus: a comparison with Penaeus japonicas, Comp. Biochem. Physiol. B, 1984, vol. 78, pp. 355–361.
  • Tsai, I.H., Lien, K.C., and Chuang, J.L., Chymotrypsins in digestive tracts of crustacean decapods (shrimp), Comp. Biochem. Physiol. B, 1986, vol. 85, no. 1, pp. 235–239.
  • Perera, E. and Simon, C., Digestive physiology of spiny lobsters: implications for formulated diet development, Rev. Aquacult., 2014, vol. 7, no. 4, pp. 243–261.
  • Rodríguez-Viera, L., Perera, E., Martos-Sitcha, J.A., Perdomo-Morales, R., Casuso, A., Montero-Alejo, V., et al., Molecular, biochemical, and dietary regulation features of α-amylase in a carnivorous crustacean, the spiny lobster Panulirus argus, PLoS ONE, 2016, vol. 11, no. 7, e0158919.
  • Andrés, M., Gisbert, E., Díaz, M., Moyano, F.J., Estévez, A., and Rotllant, G., Ontogenetic changes in digestive enzymatic capacities of the spider crab, Maja brachydactyla (Decapoda: Majidae), J. Exp. Mar. Biol. Ecol., 2010, vol. 389, nos. 1–2, pp. 75–84.
  • Albuquerque-Cavalcanti, C., García-Carreño, F.L., and del Toro, M., Trypsin and trypsin inhibitors from Penaeid shrimp, J. Food Biochem., 2002, vol. 26, no. 3, pp. 233–251.
  • Wilber, D., Wilber, T.P.Jr., Iglehart, J., and Adey, W., Culture of the Caribbean king crab on Grand Turk, Turks and Caicos Islands, BWI, 1992, pp. 588–591.
  • Butler IV, J.M. and Kintzing, M.D., An exception to the rule: top–down control of a coral reef macroinvertebrate community by a tropical spiny lobster, Bull. Mar. Sci., 2016, vol. 92, no. 1, pp. 137–152.
  • Winfree, R.A. and Weinstein, S., Food habits of the Caribbean king crab Mithrax spinosissimus (Lamarck), Proc. 39th Gulf and Caribbean Fisheries Institute, 1989.
  • Tunberg, B.G. and Creswell, R.L., Development, growth, and survival in the juvenile Caribbean king crab Mithrax spinosissimus (Lamarck) reared in the laboratory, J. Crust. Biol., 1991, vol. 11, no. 1, pp. 138–149.
  • Saborowski, R., Thatje, S., Calcagno, J.A., Lovrich, G.A., and Anger, K., Digestive enzymes in the ontogenetic stages of the southern king crab, Lithodes santolla, Mar. Biol., 2006, vol. 149, no. 4, pp. 865–873.
  • Srinivasan, A., Giri, A.P., and Gupta, V.S., Structural and functional diversities in lepidopteran serine proteases, Cell Mol. Biol. Lett., 2006, vol. 1, no. 1, pp. 132–154.
  • Córdova-Murueta, J.H., García-Carreño, F.L., and Navarrete-del-Toro, M.A., Digestive enzymes present in crustacean feces as a tool for biochemical, physiological, and ecological studies, J. Exp. Mar. Biol. Ecol., 2003, vol. 297, pp. 43–56.
  • Cian, R.E., Drago, S.R., De Medina, F.S., and Martínez-Augustin, O., Proteins and carbohydrates from red seaweeds: evidence for beneficial effects on gut function and microbiota, Mar. Drugs, 2015, vol. 13, pp. 5358–5383.
  • Prabhu, M., Chemodanov, A., Gottlieb, R., Kazir, M., Nahor, O., Gozin, M., Israel, A., Livney, Y.D., and Golberg, A., Starch from the sea: the green macroalga Ulva sp. as a potential source for sustainable starch production from the sea in marine biorefineries, Algal Res., 2019, vol. 37, pp. 215–227.
  • Van Wormhoudt, A., Bourreau, G., and Lemoullac, G., Amylase polymorphism in Crustacea Decapoda electrophoretic and immunological studies, Biochem. Syst. Ecol., 1995, vol. 23, no. 2, pp. 139–149.
  • Asaro, A., Paggi, R.A., del Valle, J.C., and López-Mañanes, A.A., Glucose homeostasis in the euryhaline crab Cytograpsus angulatus: Effects of the salinity in the amylase, maltase and sucrase activities in the hepatopancreas and in the carbohydrate reserves in different tissues. Comp. Biochem. Physiol. B, 2018, vol. 216, pp. 39–47.
  • Wojtowicz, M.B. and Brockerhoff, H., Isolation and some properties of the digestive amylase of the American lobster (Homarus americanus), Comp. Biochem. Physiol. B, 1972, vol. 42, no. 2, pp. 295–298.
  • Perera, E., Moyano, F. J., Díaz, M., Perdomo-Morales, R., Montero, V., Rodríguez-Viera, L., Alonso, E., Carrillo, O., and Galich, G., Changes in digestive enzymes through developmental and molt stages in the spiny lobster, Panulirus argus, Comp. Biochem. Physiol. B, 2008, vol. 151, pp. 250–256.
  • Delkash-Roudsari, S., Zibaee, A., and Mozhdehi, M.R.A., Digestive α-amylase of Bacterocera oleae Gmelin (Diptera: Tephritidae): Biochemical characterization and effect of proteinaceous inhibitor, J. King Saud Univ. Scienc., 2014, vol. 26, pp. 53–58.
  • Bickmeyer, U., Lüders, A.K., and Saborowski, R., pH measurements in midgut gland cells of crustaceans, Comp. Biochem. Physiol. A, 2008, vol. 151, no. 1, S48.
  • Dall, W. and Moriarty, D.J.W., Functional aspects of nutrition and digestion, The Biology of Crustacea, Internal Anatomy and Physiological Regulation, vol. 5, Mantel, L.H., ed., Academic Press, New York, 1983, pp. 215–261.
  • Michiels, M.S., del Valle, J.C., and López-Mañanes, A.A., Trypsin and N-aminopeptidase (APN) activities in the hepatopancreas of an interticial euryhaline crab: biochemical characteristics and differential modulation by histamine and salinity, Comp. Biochem. Physiol. A, 2017, vol. 204, pp. 228–235.
  • Dutta, T.Kr., Jana, M., Pahari, P.R., and Bhattacharya, T., The effect of temperature, pH, and salt on amylase in Heliodiaptomus viduus (Gurney) (Crustacea: Copepoda: Calanoida), Turk. J. Zool., 2006, vol. 30, no. 2, pp. 187–195.
  • López-López, S., Nolasco, H., and Vega-Villasante, F., Characterization of digestive gland esterase-lipase activity of juvenile redclaw crayfish Cherax quadricarinatus, Comp. Biochem. Physiol. B, 2003, vol. 135, no. 2, pp. 337–347.
  • Castro, P.F., Freitas, A.C.V., Santana, W.M., Costa, H.M.S., Carvalho, L.B., and Bezerra, R.S., Comparative study of amylases from the midgut gland of three species of penaeid shrimp, J. Crust. Biol., 2012, vol. 32, pp. 607–613.
  • Celis-Gerrero, L.E., García-Carreno, F.L., and Navarrete del Toro, M.A., Characterization of proteases in the digestive system of spiny lobster (Panulirus interruptus), Mar. Biotech., 2004, vol. 6, pp. 262–269.
  • Vega-Villasante, F., Nolasco, H., and Civera, R., The digestive enzymes of the Pacific brown shrimp Penaeus californiensis: I-Properties of amylase activity in the digestive tract, Comp. Biochem. Physiol. B, 1993, vol. 106, no. 3, pp. 547–550.
  • Klein, B., Le Moullac, G., Sellos, D., and Van Wormhoudt, A., Molecular cloning and sequencing of trypsin cDNA from Penaeus vannamei (Crustacea, Decapoda): use in assessing gene expression during the moult cycle, Int. J. Biochem. Cell Biol., 1996, vol. 28, pp. 551–563.
  • Fodor, K., Harmat, V., Hetényi, C., Kardos, J., Antal, J., Perczel, A., Patthy, A., Katona, G., and Gráf, L., Extended intermolecular interactions in a serine protease–canonical inhibitor complex account for strong and highly specific inhibition, J. Molec. Biol., 2005, vol. 350, pp. 156–169.
  • Perera, E., Pons, T., Hernandez, D., Moyano, F.J., Martínez-Rodrıíguez, G., and Mancera, J.M., New members of the brachyurins family in lobster include a trypsin-like enzyme with amino acid substitutions in the substrate-binding pocket, FEBS J., 2010, vol. 277, pp. 3489–3501.
  • Janec̆ek, S., α-Amylase family: molecular biology and evolution, Prog. Biophys. Mol. Biol., 1997, vol. 67, no. 1, pp. 67–97.
  • Blandamer, A. and Beechey, R.B., The purification and properties of an alpha-amylase from the hepatopancreas of Carcinus maenas, the common shore crab, Biochimica et Biophysica Acta, 1966, vol. 118, pp. 204–206.
  • Žóltowska, K., The isoenzymes of o-amylase from the intestine of Ascaris suum, Helminthologia, 2001, vol. 38, no. 4, pp. 205–209.
  • Louati, H., Zouari, N., Fendri, A., and Gargouri, Y., Digestive amylase of a primitive animal, the scorpion: purification and biochemical characterization, J. Chromatography, B, 2010, vol. 878, pp. 853–860.
  • Dojnov, B., Božić, N., Nenadović, V., Ivanović, J., and Vujčić, Z., Purification and properties of midgut α-amylase isolated from Morimus funereus (Coleoptera: Cerambycidae) larvae, Comp. Biochem. Physiol. B, 2008, vol. 149, pp. 53–160.