Escherichia coli, the workhorse cell factory for the production of chemicals

  1. Valle, Antonio 11
  2. Bolívar, Jorge 11
  1. 1 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

Libro:
Microbial Cell Factories Engineering for Production of Biomolecules

Editorial: Academic Press

Año de publicación: 2021

Páginas: 115-137

Tipo: Capítulo de Libro

DOI: 10.1016/B978-0-12-821477-0.00012-X GOOGLE SCHOLAR

Referencias bibliográficas

  • Akita, (2016), AMB Express, 6, pp. 94, 10.1186/s13568-016-0259-z
  • Arnold, (2019), vol. 58, pp. 14420
  • Atsumi, (2008), Metab. Eng., 10, pp. 305, 10.1016/j.ymben.2007.08.003
  • Baeshen, (2015), J. Microbiol. Biotechnol. Korean Soc. Microbiol. Biotechnol., 25, pp. 953
  • Báez-Viveros, (2004), Biotechnol. Bioeng., 87, pp. 516, 10.1002/bit.20159
  • Báez-Viveros, (2007), Microb. Cell Factories, 6, pp. 1, 10.1186/1475-2859-6-30
  • Bloor, (2006), Appl. Environ. Microbiol., 72, pp. 2520, 10.1128/AEM.72.4.2520-2525.2006
  • Bozell, (2010), Green Chem., 12, pp. 539, 10.1039/b922014c
  • Brondyk, (2009), pp. 131, 10.1016/S0076-6879(09)63011-1
  • Burgard, (2016), Curr. Opin. Biotechnol., 42, pp. 118, 10.1016/j.copbio.2016.04.016
  • Carbonell, (2018), Bioinformatics, 34, pp. 2153, 10.1093/bioinformatics/bty065
  • Causey, (2004), Proc. Natl. Acad. Sci. U. S. A., 101, pp. 2235, 10.1073/pnas.0308171100
  • Chávez-Béjar, (2012), Process Biochem., 47, pp. 1017, 10.1016/j.procbio.2012.04.005
  • Chen, (2013), Biotechnol. Adv., 31, pp. 1200, 10.1016/j.biotechadv.2013.02.009
  • Chen, (2018), Sci. Adv., 4, pp. eaaq1407, 10.1126/sciadv.aaq1407
  • Chen, (2019), Front. Microbiol., 10, pp. 1773, 10.3389/fmicb.2019.01773
  • Cheng, (2013), World J. Microbiol. Biotechnol., 29, pp. 883, 10.1007/s11274-012-1243-7
  • Clomburg, (2011), Biotechnol. Bioeng., 108, pp. 867, 10.1002/bit.22993
  • Datsenko, (2000), Proc. Natl. Acad. Sci. U. S. A., 97, pp. 6640, 10.1073/pnas.120163297
  • de la Calle, (2019), Microb. Cell Factories, 18, pp. 86, 10.1186/s12934-019-1135-8
  • de la Calle, (2019), New Biotechnol., 50, pp. 9, 10.1016/j.nbt.2019.01.002
  • Denger, (2014), Nature, 507, pp. 114, 10.1038/nature12947
  • Dong, (2011), Biotechnol. Adv., 29, pp. 11, 10.1016/j.biotechadv.2010.07.009
  • Dong, (2016), Adv Biochem Eng Biotechnol., 155, pp. 141
  • Fernández-Sandoval, (2019), Microb. Cell Factories, 18, pp. 145, 10.1186/s12934-019-1191-0
  • Fujiwara, (2020), Nat. Commun., 11, pp. 1
  • Gao, (2009), Chem. Biol., 16, pp. 1064, 10.1016/j.chembiol.2009.09.017
  • Gao, (2018), Biotechnol. Bioeng., 115, pp. 661, 10.1002/bit.26486
  • Geddes, (2011), Curr. Opin. Biotechnol., 22, pp. 312, 10.1016/j.copbio.2011.04.012
  • Hammer, (2017), Science, 358, pp. 215, 10.1126/science.aao1482
  • Han, (2018), J. Ind. Microbiol. Biotechnol., 45, pp. 939, 10.1007/s10295-018-2072-y
  • Hanai, (2007), Appl. Environ. Microbiol., 73, pp. 7814, 10.1128/AEM.01140-07
  • Hartl, (2017), Nat. Microbiol., 2, pp. 17073, 10.1038/nmicrobiol.2017.73
  • Herring, (2006), Nat. Genet., 12, pp. 1406, 10.1038/ng1906
  • Heuser, (2007), Eng. Life Sci., 7, pp. 343, 10.1002/elsc.200720203
  • Horinouchi, (2017), J. Biotechnol., 255, pp. 47, 10.1016/j.jbiotec.2017.06.408
  • Huerta-Beristain, (2017), J. Chem. Technol. Biotechnol., 92, pp. 990, 10.1002/jctb.5138
  • Insomphun, (2016), AMB Express, 6, pp. 29, 10.1186/s13568-016-0200-5
  • Jin, (2007), Proc. Natl. Acad. Sci. U. S. A., 104, pp. 7797, 10.1073/pnas.0702609104
  • Jinfeng, (2004), Wei Sheng Wu Xue Bao= Acta Microbiol Sin., 44, pp. 600
  • Jo, (2015), Microb. Cell Fact., 14, pp. 151, 10.1186/s12934-015-0343-0
  • Juminaga, (2012), Appl. Environ. Microbiol., 78, pp. 89, 10.1128/AEM.06017-11
  • Jung, (2020), Dyes Pigments, 173, pp. 107889, 10.1016/j.dyepig.2019.107889
  • Kazlauskas, (2005), Curr. Opin. Chem. Biol., 9, pp. 195, 10.1016/j.cbpa.2005.02.008
  • Kim, (2011), Biotechnol. Bioeng., 108, pp. 2941, 10.1002/bit.23259
  • Kratzer, (2015), Biotechnol. Adv., 33, pp. 1641, 10.1016/j.biotechadv.2015.08.006
  • Ladkau, (2016), Metab. Eng., 36, pp. 1, 10.1016/j.ymben.2016.02.011
  • Lee, (2002), Genome Inform., 13, pp. 214
  • Lee, (2004), Appl. Microbiol. Biotechnol., 65, pp. 56, 10.1007/s00253-004-1560-3
  • Lee, (2018), Biotechnol. Bioprocess Eng., 23, pp. 250, 10.1007/s12257-018-0017-y
  • Li, (2013), J. Ind. Microbiol. Biotechnol., 40, pp. 1461, 10.1007/s10295-013-1342-y
  • Li, (2017), Metab. Eng., 44, pp. 38, 10.1016/j.ymben.2017.09.003
  • Li, (2018), Metab. Eng., 48, pp. 25, 10.1016/j.ymben.2018.05.010
  • Lin, (2017), vol. 16, pp. 106
  • Lin, (2005), Biotechnol. Bioeng., 89, pp. 148, 10.1002/bit.20298
  • Liu, (2018), Biotechnol. Bioprocess Eng., 23, pp. 93, 10.1007/s12257-017-0290-1
  • Liu, (2015), Metab. Eng., 29, pp. 135, 10.1016/j.ymben.2015.03.009
  • Liu, (2012), Bioresour. Technol., 114, pp. 549, 10.1016/j.biortech.2012.02.088
  • Liu, (2013), Process Biochem., 48, pp. 413, 10.1016/j.procbio.2013.02.016
  • Liu, (2014), Process Biochem., 49, pp. 751, 10.1016/j.procbio.2014.01.001
  • Liu, (2015), Biotechnol. Biofuels, 8, 10.1186/s13068-015-0291-2
  • Liu, (2018), BMC Biotechnol., 18, pp. 1, 10.1186/s12896-018-0418-1
  • Liu, (2020), J. Ind. Microbiol. Biotechnol., 47, pp. 233, 10.1007/s10295-020-02262-y
  • Luo, (2017), Nat. Commun., 8, pp. 1, 10.1038/ncomms15689
  • Lütke-Eversloh, (2008), Metab. Eng., 10, pp. 69, 10.1016/j.ymben.2007.12.001
  • Macías, (2006), J. Agric. Food Chem., 54, pp. 9843, 10.1021/jf062709g
  • Maeda, (2007), BMC Biotechnol., 7, pp. 25, 10.1186/1472-6750-7-25
  • Maeda, (2008), Microb. Biotechnol., 1, pp. 30, 10.1111/j.1751-7915.2007.00003.x
  • Maeda, (2018), Appl. Microbiol. Biotechnol., 102, pp. 2041, 10.1007/s00253-018-8752-8
  • Martin, (2013), Nat. Commun., 4, pp. 1
  • Matsubara, (2016), J. Biosci. Bioeng., 122, pp. 421, 10.1016/j.jbiosc.2016.03.011
  • Mazumdar, (2010), Appl. Environ. Microbiol., 76, pp. 4327, 10.1128/AEM.00664-10
  • Milker, (2017), Front. Microbiol., 8, pp. 2201, 10.3389/fmicb.2017.02201
  • Moon, (2008), Biochem. Eng. J., 40, pp. 312, 10.1016/j.bej.2008.01.001
  • Nam, (2012), Science, 337, pp. 1101, 10.1126/science.1216861
  • Nielsen, (2016), vol. 164, pp. 1185
  • Niu, (2019), Metab. Eng. Commun., 8, pp. e00082, 10.1016/j.mec.2018.e00082
  • Noda, (2019), Microb. Cell Fact., 18, pp. 124, 10.1186/s12934-019-1171-4
  • Ohtake, (2017), Metab. Eng., 41, pp. 135, 10.1016/j.ymben.2017.04.003
  • Oldiges, (2014), Appl. Microbiol. Biotechnol., 98, pp. 5859, 10.1007/s00253-014-5782-8
  • Parra-Ramírez, (2018), Biochem. Eng. J., 140, pp. 123, 10.1016/j.bej.2018.09.015
  • Portnoy, (2011), Curr. Opin. Biotechnol., 22, pp. 590, 10.1016/j.copbio.2011.03.007
  • Przystałowska, (2015), Microbiol. Res., 171, pp. 1, 10.1016/j.micres.2014.12.007
  • Putri, (2018), Metabolomics, 14, pp. 1, 10.1007/s11306-018-1386-0
  • Rodriguez, (2014), Microb. Cell Fact., 13, pp. 1, 10.1186/s12934-014-0126-z
  • Roldán, (2008), FEMS Microbiol. Rev., 32, pp. 474, 10.1111/j.1574-6976.2008.00107.x
  • Rosales-Colunga, (2014), Rev. Environ. Sci. Biotechnol., 14, pp. 123, 10.1007/s11157-014-9354-2
  • Rosano, (2014), 5, pp. 172
  • Rosenberg, (2019), Trends Biotechnol., 37, pp. 29, 10.1016/j.tibtech.2018.08.001
  • Saini, (2015), Metab. Eng., 27, pp. 76, 10.1016/j.ymben.2014.11.001
  • Santos, (2008), Appl. Environ. Microbiol., 74, pp. 1190, 10.1128/AEM.02448-07
  • Sauer, (2008), Trends Biotechnol., 26, pp. 100, 10.1016/j.tibtech.2007.11.006
  • Savile, (2010), Science, 329, pp. 305, 10.1126/science.1188934
  • Schroer, (2010), Biotechnol Bioeng., 106, pp. 699, 10.1002/bit.22775
  • Seol, (2014), Int. J. Hydrogen Energy, 39, pp. 19323, 10.1016/j.ijhydene.2014.06.054
  • Seol, (2016), Biotechnol. J., 11, pp. 249, 10.1002/biot.201400829
  • Shams Yazdani, (2008), Metab. Eng., 10, pp. 340, 10.1016/j.ymben.2008.08.005
  • Sheldon, (2018), Chem. Commun., 54, pp. 6088, 10.1039/C8CC02463D
  • Soma, (2017), J. Biosci. Bioeng., 123, pp. 625, 10.1016/j.jbiosc.2016.12.009
  • Subudhi, (2011), Int. J. Hydrog. Energy, 36, pp. 14024, 10.1016/j.ijhydene.2011.04.027
  • Sun, (2018), Microb. Cell Fact., 17, pp. 66, 10.1186/s12934-018-0915-x
  • Sundara Sekar, (2016), Biotechnol. Biofuels, 9, pp. 95, 10.1186/s13068-016-0510-5
  • Sundara Sekar, (2017), Biotechnol. Biofuels, 10, pp. 85, 10.1186/s13068-017-0768-2
  • Tran, (2014), Appl. Microbiol. Biotechnol., 98, pp. 4757, 10.1007/s00253-014-5600-3
  • Trchounian, (2015), Crit. Rev. Biotechnol., 35, pp. 103, 10.3109/07388551.2013.809047
  • Trchounian, (2012), Crit. Rev. Biochem. Mol. Biol., 47, pp. 236, 10.3109/10409238.2012.655375
  • Trichez, (2018), Microb. Cell Factories, 17, pp. 113, 10.1186/s12934-018-0959-y
  • Truppo, (2017), ACS Med. Chem. Lett., 8, pp. 476, 10.1021/acsmedchemlett.7b00114
  • Vail, (2005), Drug Metab. Pharmacokinet., 32, pp. 67
  • Valle, (2012), Appl. Microbiol. Biotechnol., 94, pp. 163, 10.1007/s00253-011-3787-0
  • Valle, (2017), New Biotechnol., 35, pp. 1, 10.1016/j.nbt.2016.10.007
  • Valle, (2015), Microb. Cell Fact., 14, pp. 93, 10.1186/s12934-015-0285-6
  • Valle, (2015), Biotechnol. J., 10, pp. 1750, 10.1002/biot.201500005
  • Valle, (2019), Biotechnol. Adv., 37, pp. 616, 10.1016/j.biotechadv.2019.03.006
  • Vorobieva, (2014), J. Biol. Chem., 289, pp. 29086, 10.1074/jbc.M114.595363
  • Wang, (2007), Mol. Biotechnol., 37, pp. 112, 10.1007/s12033-007-0041-1
  • Wang, (2013), Appl. Microbiol. Biotechnol., 97, pp. 7587, 10.1007/s00253-013-5026-3
  • Wang, (2019), J. Ind. Microbiol. Biotechnol., 46, pp. 1557, 10.1007/s10295-019-02215-0
  • Weiner, (2014), Biochem. Eng. J., 83, pp. 62, 10.1016/j.bej.2013.12.001
  • Wen, (2016), Biotechnol. Biofuels, 9, pp. 267, 10.1186/s13068-016-0680-1
  • Wittmann, (2012)
  • Wu, (2018), Chem. Cat. Chem., 10, pp. 2164
  • Wu, (2016), Nat. Commun., 7, pp. 1
  • Xu, (2020), Process Biochem., 92, pp. 85, 10.1016/j.procbio.2020.02.023
  • Yim, (2011), Nat. Chem. Biol., 7, pp. 445, 10.1038/nchembio.580
  • Yomano, (2009), Biotechnol. Lett., 31, pp. 1389, 10.1007/s10529-009-0011-8
  • Zelić, (2004), Biotechnol. Bioeng., 85, pp. 638, 10.1002/bit.10820
  • Zeymer, (2018), Annu. Rev. Biochem., 87, pp. 131, 10.1146/annurev-biochem-062917-012034
  • Zhao, (2011), J. Ind. Microbiol. Biotechnol., 38, pp. 1921, 10.1007/s10295-011-0978-8
  • Zhao, (2020), Biotechnol. Appl. Biochem., pp. bab.1890, 10.1002/bab.1890
  • Zhao, (2020), Microb. Cell Fact., 19, pp. 46, 10.1186/s12934-020-01312-5
  • Zheng, (2012), Appl. Environ. Microbiol., 78, pp. 4346, 10.1128/AEM.00356-12
  • Zhou, (2003), Appl. Environ. Microbiol., 69, pp. 399, 10.1128/AEM.69.1.399-407.2003
  • Zhou, (2005), Biotechnol. Lett., 27, pp. 1891, 10.1007/s10529-005-3899-7
  • Zhou, (2006), Biotechnol. Lett., 28, pp. 663, 10.1007/s10529-006-0032-5
  • Zhou, (2016), Appl. Biochem. Biotechnol., 178, pp. 324, 10.1007/s12010-015-1874-x
  • Zhu, (2007), Appl. Environ. Microbiol., 73, pp. 456, 10.1128/AEM.02022-06
  • Zhuang, (2019), Microb. Cell Factories, 18, pp. 1, 10.1186/s12934-019-1186-x
  • Zou, (2017), Appl. Microbiol. Biotechnol., 101, pp. 7417, 10.1007/s00253-017-8485-0