Investigating the Possible Origin of Raman Bands in Defective sp2/sp3 Carbons below 900 cm−1: Phonon Density of States or Double Resonance Mechanism at Play?

  1. Buijnsters, Josephus Gerardus
  2. Cartry, Gilles
  3. Arenal, Raul
  4. Pardanaud, Cedric
  5. Lajaunie, Luc
  1. 1 Aix-Marseille University
    info

    Aix-Marseille University

    Marsella, Francia

    ROR https://ror.org/035xkbk20

  2. 2 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

  3. 3 Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon, Universidad de Zaragoza, 50018 Zaragoza, Spain
  4. 4 Instituto de Nanociencia y Materiales de Aragón
    info

    Instituto de Nanociencia y Materiales de Aragón

    Zaragoza, España

    ROR https://ror.org/031n2c920

  5. 5 Fundación Agencia Aragonesa para la Investigación y el Desarrollo
    info

    Fundación Agencia Aragonesa para la Investigación y el Desarrollo

    Zaragoza, España

  6. 6 Department of Precision and Microsystems Engineering, Research Group of Micro and Nano Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
Journal:
C — Journal of Carbon Research

ISSN: 2311-5629

Year of publication: 2019

Volume: 5

Issue: 4

Pages: 79

Type: Article

DOI: 10.3390/C5040079 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: C — Journal of Carbon Research

Abstract

Multiwavelength Raman spectroscopy (325, 514, 633 nm) was used to analyze three different kinds of samples containing sp2 and sp3 carbons: chemical vapor deposited diamond films of varying microstructure, a plasma-enhanced chemical vapor deposited hydrogenated amorphous carbon film heated at 500 °C and highly oriented pyrolytic graphite exposed to a radio-frequent deuterium plasma. We found evidence that the lower part of the phonon density of states (PDOS) spectral region (300–900 cm−1) that rises when defects are introduced in crystals can give more information on the structure than expected. For example, the height of the PDOS, taken at 400 cm−1 and compared to the height of the G band, depends on the sp2 content, estimated by electron energy-loss spectroscopy. This ratio measured with 633 nm laser is more intense than with 514 nm laser. It is also correlated for diamond to the relative intensity ratio between the diamond band at 1332 cm−1 and the G band at ≈1500–1600 cm−1 when using 325 nm laser. Moreover, it is found that the shape of the PDOS of the exposed graphite samples is different when changing the wavelength of the laser used, giving evidence of a double resonance mechanism origin with the rise of the associated D3, D4 and D5 bands, which is not the case for a-C:H samples.