Tailoring CO2 adsorption and activation properties of ceria nanocubes by coating with nanometre-thick yttria layers

  1. Barroso Bogeat, Adrián
  2. Blanco, Ginesa
  3. Pintado, José María
  4. Goma, Daniel
  5. Calvino Gámez, José Juan
  1. 1 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

  2. 2 Universidad de Salamanca
    info

    Universidad de Salamanca

    Salamanca, España

    ROR https://ror.org/02f40zc51

Revista:
Surfaces and Interfaces

ISSN: 2468-0230

Año de publicación: 2021

Volumen: 26

Páginas: 101353

Tipo: Artículo

DOI: 10.1016/J.SURFIN.2021.101353 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Surfaces and Interfaces

Resumen

Ceria (CeO2) is a ubiquitous component in catalysts for environmental protection processes, especially those devoted to CO2 valorisation. Aimed at preparing ceria-based nanomaterials with enhanced CO2 adsorption and activation properties, both the surface acid-base and redox features of ceria nanocubes were modulated by a novel, simple, wet chemistry synthetic strategy consisting of their coating with yttria (Y2O3) layers of variable thickness in the nanometre scale. The as-synthesised samples were characterised with special attention to their surface basicity and reducibility. Characterisation results revealed that the surface doping with yttria not only improved both the reducibility at low temperature and CO2 adsorption capacity of ceria nanocubes, but also introduced a variety of basic sites with different strength. Finally, the careful control of the yttria layer thickness allowed to modulate these effects and thereby the ability of nanostructured ceria to adsorb and activate the CO2 molecule.

Referencias bibliográficas

  • Trovarelli, (1996), Catal. Rev. - Sci. Eng., 38, pp. 439, 10.1080/01614949608006464
  • Trovarelli, (1999), Catal. Today., 50, pp. 353, 10.1016/S0920-5861(98)00515-X
  • Trovarelli, (2002)
  • (2013)
  • Montini, (2016), Chem. Rev., 116, pp. 5987, 10.1021/acs.chemrev.5b00603
  • Trovarelli, (1999), Comments Inorg. Chem. A J. Crit. Discuss. Curr. Lit., 20, pp. 263
  • Duprez, (2002), pp. 243
  • Di Monte, (2004), Top. Catal., 28, pp. 47, 10.1023/B:TOCA.0000024333.08447.f7
  • Giordano, (2000), J. Catal., 193, pp. 273, 10.1006/jcat.2000.2900
  • Aneggi, (2006), J. Alloys Compd., 408–412, pp. 1096, 10.1016/j.jallcom.2004.12.113
  • Giordano, (2001), Ind. Eng. Chem. Res., 40, pp. 4828, 10.1021/ie010105q
  • Sun, (2012), Energy Environ. Sci., 5, pp. 8475, 10.1039/c2ee22310d
  • Gatica, (2014), Appl. Catal. A Gen., 479, pp. 35, 10.1016/j.apcata.2014.04.030
  • Delgado, (2013), pp. 47
  • Capdevila-Cortada, (2016), Appl. Catal. B Environ., 197, pp. 299, 10.1016/j.apcatb.2016.02.035
  • Rosynek, (1977), Catal. Rev. Sci. Engeneering., 16, pp. 111, 10.1080/03602457708079635
  • Bernal, (2006), J. Alloys Compd., 408–412, pp. 496, 10.1016/j.jallcom.2004.12.090
  • Sato, (2009), Appl. Catal. A Gen., 356, pp. 57, 10.1016/j.apcata.2008.12.019
  • Mullins, (2015), Surf. Sci. Rep., 70, pp. 42, 10.1016/j.surfrep.2014.12.001
  • Trovarelli, (2017), ACS Catal, 7, pp. 4716, 10.1021/acscatal.7b01246
  • Vivier, (2010), ChemSusChem, 3, pp. 654, 10.1002/cssc.201000054
  • Utiyama, (1978), J. Catal., 53, pp. 237, 10.1016/0021-9517(78)90071-4
  • Choudhary, (1991), J. Catal., 130, pp. 411, 10.1016/0021-9517(91)90124-M
  • Hargreaves, (2002), Appl. Catal. A Gen., 227, pp. 191, 10.1016/S0926-860X(01)00935-8
  • Bernal, (1999), Catal. Today., 50, pp. 175, 10.1016/S0920-5861(98)00503-3
  • Bernal, (2003), Catal. Today., 77, pp. 385, 10.1016/S0920-5861(02)00382-6
  • Boaro, (2019), Front. Chem., 7, pp. 28, 10.3389/fchem.2019.00028
  • Rodriguez, (2017), Chem. Soc. Rev., 46, pp. 1824, 10.1039/C6CS00863A
  • Etsell, (1970), Chem. Rev., 70, pp. 339, 10.1021/cr60265a003
  • Artini, (2018), Inorg. Chem., 57, pp. 13047, 10.1021/acs.inorgchem.8b02131
  • Coduri, (2018), Front. Chem., 6, pp. 526, 10.3389/fchem.2018.00526
  • Aneggi, (2014), ACS Catal, 4, pp. 172, 10.1021/cs400850r
  • Castanet, (2019), ACS Appl. Mater. Interfaces., 11, pp. 11384, 10.1021/acsami.8b21667
  • Li, (2014), Chem. Soc. Rev., 43, pp. 1543, 10.1039/C3CS60296F
  • Ma, (2018), Surf. Sci. Rep., 73, pp. 1, 10.1016/j.surfrep.2018.02.001
  • Mikkelsen, (2010), Energy Environ. Sci., 3, pp. 43, 10.1039/B912904A
  • Chang, (2020), ACS Catal, 10, pp. 613, 10.1021/acscatal.9b03935
  • Mai, (2005), J. Phys. Chem. B., 109, pp. 24380, 10.1021/jp055584b
  • Tinoco, (2015), ACS Catal, 5, pp. 3504, 10.1021/acscatal.5b00086
  • Fernández-García, (2019), Catal. Today., 336, pp. 90, 10.1016/j.cattod.2019.01.078
  • Fernandez-Garcia, (2016), J. Phys. Chem. C., 120, pp. 1891, 10.1021/acs.jpcc.5b09495
  • Collins, (2017), Sci. Rep., 7, pp. 5406, 10.1038/s41598-017-05671-9
  • Jiang, (2017), ACS Appl. Mater. Interfaces., 9, pp. 18595, 10.1021/acsami.7b05036
  • Zhao, (2010), Microelectron. Eng., 87, pp. 1716, 10.1016/j.mee.2009.09.012
  • Cabeza, (2014), Surf. Interface Anal., 46, pp. 712, 10.1002/sia.5499
  • Barroso-Bogeat, (2018), Surf. Interface Anal., 50, pp. 1025, 10.1002/sia.6444
  • Brunauer, (1938), J. Am. Chem. Soc., 60, pp. 309, 10.1021/ja01269a023
  • Allen, (2012), MRS Bull, 37, pp. 47, 10.1557/mrs.2011.331
  • Sánchez, (2019), J. Mater. Chem. A., 7, pp. 8993, 10.1039/C8TA11672E
  • Klug, (1974)
  • Thommes, (2015), Pure Appl. Chem., 87, pp. 1051, 10.1515/pac-2014-1117
  • Cordeiro, (2013), Chem. Mater., 25, pp. 2028, 10.1021/cm304029s
  • Florea, (2013), Cryst. Growth Des., 13, pp. 1110, 10.1021/cg301445h
  • Lin, (2014), Nano Lett, 14, pp. 191, 10.1021/nl403713b
  • Tinoco, (2019), Catal. Sci. Technol., 9, pp. 2328, 10.1039/C9CY00273A
  • Crozier, (2008), Ultramicroscopy, 108, pp. 1432, 10.1016/j.ultramic.2008.05.015
  • Nolan, (2005), Surf. Sci., 595, pp. 223, 10.1016/j.susc.2005.08.015
  • Tabakova, (2019), J. Rare Earths., 37, pp. 383, 10.1016/j.jre.2018.07.008
  • Yao, (1984), J. Catal., 86, pp. 254, 10.1016/0021-9517(84)90371-3
  • Désaunay, (2013), J. Catal., 297, pp. 193, 10.1016/j.jcat.2012.10.011
  • Perrichon, (1994), J. Chem. Soc. Faraday Trans., 90, pp. 773, 10.1039/FT9949000773
  • Auroux, (1990), J. Phys. Chem., 94, pp. 6371, 10.1021/j100379a041
  • Cutrufello, (2002), Top. Catal., 19, pp. 225, 10.1023/A:1015376409863
  • Bernal, (2005), pp. 9
  • Binet, (1999), Catal. Today., 50, pp. 207, 10.1016/S0920-5861(98)00504-5
  • Vayssilov, (2011), J. Phys. Chem. C., 115, pp. 23435, 10.1021/jp208050a
  • Finos, (2012), Catal. Today., 180, pp. 9, 10.1016/j.cattod.2011.04.054
  • Wu, (2015), J. Phys. Chem. C., 119, pp. 7340, 10.1021/acs.jpcc.5b00859
  • Köck, (2013), J. Phys. Chem. C., 117, pp. 17666, 10.1021/jp405625x
  • Wang, (2013), Nanoscale, 5, pp. 5582, 10.1039/c3nr00831b
  • Bernal, (2006), Surf. Interface Anal., 38, pp. 229, 10.1002/sia.2224
  • Metiu, (2012), J. Phys. Chem. C., 116, pp. 10439, 10.1021/jp301341t
  • Staudt, (2011), J. Phys. Chem. C., 115, pp. 8716, 10.1021/jp200382y
  • Albrecht, (2014), J. Phys. Chem. C., 118, pp. 9042, 10.1021/jp501201b
  • Symington, (2020), J. Phys. Chem. C., 124, pp. 23210, 10.1021/acs.jpcc.0c07437