Parametric Solutions to a Static Fourth-Order Euler–Bernoulli Beam Equation in Terms of Lamé Functions

  1. Ruiz, A. 1
  2. Muriel, C. 1
  3. Ramírez, J. 1
  1. 1 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

Libro:
Recent Advances in Pure and Applied Mathematics

Editorial: Springer

ISSN: 2509-8888 2509-8896

ISBN: 9783030413200 9783030413217

Año de publicación: 2020

Páginas: 93-103

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-030-41321-7_7 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

The exact general solution to a static fourth-order Euler–Bernoulli beam equation has been obtained and it has been written in terms of a fundamental set of solutions to a Lamé equation. This permits to express the general solution in parametric form in terms of Weierstrass elliptic functions. Three-parameter families of solutions have been also reported by setting particular values to one of the arbitrary constants of integration in the general solution. One of these families is expressed in terms of the Weierstrass ℘-function and ζ-function whereas two of them are given in terms of either trigonometric or hyperbolic functions. Graphical representations of particular solutions are also shown for different values of the arbitrary constants of integration.

Referencias bibliográficas

  • Han, S.M., Benaroya, H., Wei, T.: Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 225(5), 935–988 (1999)
  • Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Dover, New York (1944)
  • Olver, P.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, New York (1993)
  • Ibrahimov, N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, Chirchester (1999)
  • Bokhari, A.H., Mahomed, F.M., Zaman, F.D.: Invariant boundary value problems for a fourth-order dynamic Euler-Bernoulli beam equation. J. Math. Phys. 53, 043703–043709 (2012)
  • Naz, R., Mahomed, F.M.: Dynamic Euler-Bernoulli beam equation: classifications and reductions. Math. Probl. Eng. 2015, 7pp. (2015)
  • Bokhari, A.H., Mahomed, F.M., Zaman, F.D.: Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation. J. Math. Phys. 51, 053517–053526 (2010)
  • Fatima, A., Bokhari, A.H., Mahomed, F.M., Zaman F.D.: A note on the integrability of a remarkable static Euler-Bernoulli beam equation. J. Eng. Math. 82, 101–108 (2013)
  • Silva, P.L., Freire, I.L.: Symmetry analysis of a class of autonomous even-order ordinary differential equations. IMA J. Appl. Math. 80(6), 1739–1758 (2015)
  • Freire, I.L., Silva, P.L., Torrisi, M.: Lie and Noether symmetries for a class of fourth-order Emden-Fowler equations. J. Phys. A Math. Theor. 46, 245206–245215 (2013)
  • Ruiz, A., Muriel, C.: Solvable structures associated to the nonsolvable symmetry algebra 𝔰 𝔩 ( 2 , ℝ ) $$\mathfrak {sl}(2,\mathbb {R})$$ . SIGMA 077, 18pp. (2016)
  • Ruiz, A., Muriel, C.: First integrals and parametric solutions of third-order ODEs with Lie symmetry algebra isomorphic to 𝔰 𝔩 ( 2 , ℝ ) $$\mathfrak {sl}(2,\mathbb {R})$$ . J. Phys. A Math. Theor. 50, 205201–205222 (2017)
  • Basarab-Horwath, P.: Integrability by quadratures for systems of involutive vector fields. Ukr. Math. J. 43(10), 1236–1242 (1991)
  • Ruiz, A., Muriel, C., Ramírez, J.: Exact general solution and first integrals of a remarkable static Euler-Bernoulli beam equation. Commun. Nonlinear Sci. Numer. Simul. 69, 261–269 (2019)
  • Abramovich, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. United States Department of Commerce, National Bureau of Standards (1964)
  • Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)
  • Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1935)
  • Gröbner, W., Hofreiter, N.: Integraltafel Erster Teis Unbestimmte Integrale. Springer, Wien GMBH (1949)