The Interactive Role of Hydrocarbon Seeps, Hydrothermal Vents and Intermediate Antarctic/Mediterranean Water Masses on the Distribution of Some Vulnerable Deep-Sea Habitats in Mid Latitude NE Atlantic Ocean

  1. Somoza, Luis
  2. Rueda, José L.
  3. Sánchez-Guillamón, Olga
  4. Medialdea, Teresa
  5. Rincón-Tomás, Blanca
  6. González, Francisco J.
  7. Palomino, Desirée
  8. Madureira, Pedro
  9. López-Pamo, Enrique
  10. Fernández-Salas, Luis M.
  11. Santofimia, Esther
  12. León, Ricardo
  13. Marino, Egidio
  14. Fernández-Puga, María del Carmen
  15. Vázquez, Juan T.
Revista:
Oceans

ISSN: 2673-1924

Año de publicación: 2021

Volumen: 2

Número: 2

Páginas: 351-385

Tipo: Artículo

DOI: 10.3390/OCEANS2020021 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Oceans

Resumen

In this work, we integrate five case studies harboring vulnerable deep-sea benthic habitatsin different geological settings from mid latitude NE Atlantic Ocean (24–42◦ N). Data and images ofspecific deep-sea habitats were acquired with Remoted Operated Vehicle (ROV) sensors (temperature,salinity, potential density, O2, CO2, and CH4). Besides documenting some key vulnerable deep-seahabitats, this study shows that the distribution of some deep-sea coral aggregations (including scler-actinians, gorgonians, and antipatharians), deep-sea sponge aggregations and other deep-sea habitatsare influenced by water masses’ properties. Our data support that the distribution of scleractinianreefs and aggregations of other deep-sea corals, from subtropical to north Atlantic could be dependentof the latitudinal extents of the Antarctic Intermediate Waters (AAIW) and the Mediterranean Out-flow Waters (MOW). Otherwise, the distribution of some vulnerable deep-sea habitats is influenced,at the local scale, by active hydrocarbon seeps (Gulf of Cádiz) and hydrothermal vents (El Hierro,Canary Island). The co-occurrence of deep-sea corals and chemosynthesis-based communities hasbeen identified in methane seeps of the Gulf of Cádiz. Extensive beds of living deep-sea mussels(Bathymodiolus mauritanicus) and other chemosymbiotic bivalves occur closely to deep-sea coralaggregations (e.g., gorgonians, black corals) that colonize methane-derived authigenic carbonates.

Información de financiación

Financiadores

Referencias bibliográficas

  • 10.1016/j.marpol.2019.103642
  • 10.3390/geosciences8020063
  • Harris, (2012), pp. 936
  • (2017), pp. 23
  • 10.1007/s11001-011-9129-x
  • 10.1016/j.dsr.2017.06.003
  • 10.1002/2015GC005861
  • 10.1029/1999JC900204
  • 10.1016/0198-0149(79)90095-5
  • 10.1175/2008JPO3825.1
  • 10.5194/os-9-411-2013
  • 10.3389/fmars.2020.00239
  • Gardner, (1999), EOS Trans. AGU, 80, pp. 483
  • Ivanov, (2001)
  • 10.1029/2002EO000371
  • 10.1016/S0025-3227(02)00686-2
  • 10.1016/S0025-3227(02)00685-0
  • 10.1016/j.margeo.2005.04.007
  • 10.1016/j.margeo.2008.10.007
  • 10.1007/s00367-012-0275-1
  • 10.1016/j.margeo.2015.10.001
  • 10.1016/j.gca.2006.11.022
  • 10.1016/j.margeo.2004.05.029
  • 10.1007/s00367-016-0440-z
  • 10.1016/S0025-3227(02)00687-4
  • 10.1016/j.sedgeo.2011.10.013
  • 10.1038/35036572
  • 10.1016/j.margeo.2008.11.005
  • 10.1029/2008GC002332
  • 10.1007/s11001-004-1161-7
  • 10.13140/2.1.1915.9048
  • 10.1016/S0967-0637(02)00163-2
  • 10.1016/j.pocean.2006.03.019
  • 10.1002/2016GC006733
  • 10.1038/srep00486
  • 10.1038/srep01140
  • 10.1016/j.geomorph.2015.12.016
  • Bogaard, (2013), Sci. Rep., 3, pp. 1
  • 10.1016/j.oregeorev.2016.10.005
  • 10.3390/min8070285
  • 10.3390/min9070439
  • 10.1175/2010JPO4301.1
  • Informe Científico-Técnico Campaña SUBVENT-2, 2014, p. 43http://info.igme.es/SidPDF/166000/941/166941_0000001.pdf
  • Ocean Data View 2017http://odv.awi.de
  • 10.1016/j.margeo.2013.12.017
  • Urgorri, (1994), J. Molluscan Stud., 60, pp. 157, 10.1093/mollus/60.2.157
  • Vázquez, (2018), pp. 251
  • 10.1130/G33863.1
  • 10.1016/j.margeo.2020.106333
  • 10.1016/0278-4343(92)90079-Y
  • Judd, (2007)
  • 10.3389/fmars.2016.00072
  • 10.1007/s12526-015-0366-0
  • Lozano, (2020), pp. 847
  • 10.1111/brv.12169
  • Freiwald, (2005)
  • 10.1007/s10750-014-2116-x
  • 10.11646/zootaxa.4768.4.1
  • 10.1016/j.dsr.2020.103326
  • 10.5194/bg-10-2569-2013
  • 10.3354/meps07623
  • 10.1007/s00531-008-0312-5
  • 10.1017/S0025315407058584
  • 10.1016/j.pocean.2012.11.003
  • Ceramicola, (2018), pp. 367
  • 10.3390/microorganisms8030367
  • 10.1016/j.dsr.2014.07.014
  • 10.5194/bg-16-1607-2019
  • 10.5194/os-15-1381-2019
  • 10.1016/j.margeo.2007.10.012
  • 10.1016/j.dsr.2009.05.016
  • 10.1016/j.margeo.2016.01.014
  • 10.1016/j.quascirev.2018.02.012
  • 10.5194/egusphere-egu2020-20171
  • Hinrichs, (2002), pp. 457
  • 10.1016/j.margeo.2010.08.012
  • 10.1111/j.1365-3121.1990.tb00031.x
  • 10.1007/s00367-007-0074-2
  • 10.1016/j.dsr.2008.12.006
  • Demopoulos, (2011), Beyond Horiz., 11, pp. 37
  • 10.1016/j.margeo.2010.01.003
  • 10.1016/j.margeo.2004.03.006
  • Henriet, (2003), pp. 217
  • 10.1016/j.dsr2.2016.04.012
  • 10.1016/j.epsl.2016.05.023
  • 10.1016/j.crte.2003.02.001
  • 10.1002/2017GC006889
  • 10.3390/geosciences9010052
  • 10.3389/fmars.2020.568035
  • 10.3354/meps13106
  • 10.3389/fmars.2019.00278
  • 10.1016/j.oregeorev.2012.12.001