Water surface elevation in coastal and inland waters using satellite radar altimetry

  1. Vignudelli, Stefano 1
  2. Scozzari, Andrea 2
  3. Abileah, Ron 3
  4. Gómez-Enri, Jesús 4
  5. Benveniste, Jérôme 5
  6. Cipollini, Paolo 6
  1. 1 Biophysics Institute of the National Research Council (CNR-IBF), Pisa, Italy
  2. 2 Consiglio Nazionale delle Ricerche (CNR-ISTI), Pisa, Italy
  3. 3 Jomegak, San Carlos, CA, United States
  4. 4 University of Cadiz, Cadiz, Spain
  5. 5 European Space Agency (ESA-ESRIN), Directorate of Earth Observation Programmes, EO Science, Applications and Climate Department, Frascati, Italy
  6. 6 Telespazio VEGA UK Ltd. for ESA-ECSAT, Harwell, United Kingdom
Libro:
Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment

Editorial: Elsevier

ISBN: 978-0-12-814899-0

Año de publicación: 2019

Páginas: 87-127

Tipo: Capítulo de Libro

DOI: 10.1016/B978-0-12-814899-0.00004-3 GOOGLE SCHOLAR lock_openAcceso abierto editor

Objetivos de desarrollo sostenible

Resumen

This chapter provides an overview of the satellite altimetry measurement system, how it works and how the water surface elevation is derived. Satellite altimetry had originally been designed for open ocean studies, however a decade of progress has significantly improved the retrieval of data in coastal zones and inland waters. Advances in observational techniques (Ka-band and delay-Doppler/SAR-mode), revisited data processing, and improved corrections led to a higher accuracy in water surface elevation retrieval in these challenging areas. The available data sets with consistent coastal processing as well as the existing products dedicated to inland waters are presented including their potential accuracy for exploitation. The latest developments and capabilities of the various altimetric missions around coasts and inland are illustrated, with an emphasis on describing the benefits to studies of extreme events (heavy river discharge and storm surges). The future satellite altimetry missions such as Sentinel-3 and Sentinel-6/Jason-CS are expected to increase capabilities and coverage and represent a great opportunity to stimulate further exploitation of altimeter data in coastal and inland water targets.

Referencias bibliográficas

  • Abileah, (2013), Remote Sensing Environ., 139, pp. 271, 10.1016/j.rse.2013.08.005
  • Abileah, (2017), Remote Sensing, 9, pp. 605, 10.3390/rs9060605
  • Andersen, (2015), vol. 144, pp. 111
  • Andersen, (2013), pp. 225
  • Bajo, (2017), Ocean Model., 113, pp. 85, 10.1016/j.ocemod.2017.03.014
  • Benveniste, J., Roca, M., Levrini, G., Vincent, P., Baker, S., Zanife, O., et al., 2001. The Radar Altimetry Mission: RA-2, MWR, DORIS, and LRR. ESA Bulletin, No 106 (EnviSat Special Issue), pp. 67–76. Available at http://www.esa.int/esapub/bulletin/bullet106/bul106_5.pdf.
  • Berry, P.A.M., Wheeler, J.L., 2009. Jason2-ENVISAT exploitation, development of algorithms for the exploitation of Jason-2-ENVISATaltimetry for the generation of a river and lake product,” Product Handbook, Internal Report DMU-RIVL-SPE-03-110, De Montfort University 3(5).
  • Berry, (1997), ESA Pub. SP414, 1, pp. 403
  • Berry, (2005), Geophys. Res. Lett., 32, pp. L16401, 10.1029/2005GL022814
  • Biancamaria, (2016), Surveys Geophys., 37, pp. 307, 10.1007/s10712-015-9346-y
  • Birkett, C.M., Ricko, M., Beckley, B.D., Yang, X., Tetrault, R.L., 2017, December. G-REALM: a lake/reservoir monitoring tool for drought monitoring and water resources management. In AGU Fall Meeting Abstracts.
  • Birol, (2017), Adv. Space Res., 59, pp. 936, 10.1016/j.asr.2016.11.005
  • Bonnefond, (2011)
  • Bouffard, J., Naeije, M., Banks, C.J., Calafat, F.M., Cipollini, P., Snaith, H.M., et al., 2017. CryoSat ocean product quality status and future evolution. Advances in Space Research. Available from: http://dx.doi.org/10.1016/j.asr.2017.11.043 (in press).
  • Brown, (1977), IEEE Trans. Anten. Propagat., 25, pp. 67, 10.1109/TAP.1977.1141536
  • Chevalier, (2017), J. Geosci. Environ. Protect., 5, pp. 54, 10.4236/gep.2017.513004
  • Cipollini, (2010), Vol. 2, pp. 21
  • Cipollini, (2017), Surveys Geophys., 38, pp. 33, 10.1007/s10712-016-9392-0
  • Cipollini, (2017)
  • Crétaux, (2011), Adv. Space Res., 47, pp. 1497, 10.1016/j.asr.2011.01.004
  • Crétaux, (2011), Marine Geodesy, 34, pp. 291, 10.1080/01490419.2011.585110
  • Crétaux, (2017)
  • De Biasio, (2016), IEEE J. Selected Topics Appl. Earth Observat. Remote Sensing, 9, pp. 5089, 10.1109/JSTARS.2016.2603235
  • De Biasio, (2017), Europ. J. Remote Sensing, 50, pp. 428, 10.1080/22797254.2017.1350558
  • Díez-Minguito, (2012), J. Geophys. Res., 117, pp. 14, 10.1029/2011JC007344
  • Dinardo, S., 2014. GPOD CryoSat-2 SARvatore Software Prototype User Manual. https://wiki.services.eoportal.org/tiki-index.php?page=GPOD+CryoSat-2+SARvatore+Software+Prototype+User+Manual.
  • Dinardo, (2015), In Sentinel-3 for Science Workshop, 734, pp. 16
  • Dinardo, S., Fenoglio-Marc, L., Buchhaupt, C., Becker, M., Scharroo, R., Fernandes, M.J., et al., 2018. Coastal SAR and PLRM Altimetry in German Bight and West Baltic Sea. Advances in Space Research.
  • Donlon, (2012), Remote Sensing Environ., 120, pp. 37, 10.1016/j.rse.2011.07.024
  • Duan, (2013), Remote Sensing Environ., 134, pp. 403, 10.1016/j.rse.2013.03.010
  • ESA, European Space Agency, 2017. Sentinels for Copernicus, BR-319 (third ed.). ISBN 978-92-9221-108-0.
  • EuroGOOS, Sea level observation networks in and around Europe Challenges in monitoring increasing sea level hazards, Note to policymakers, report, 4 pp, April 2017. Available at www.eurogoos.eu.
  • Fenoglio-Marc, (2015), Geophys. Res. Lett., 42, pp. 9925, 10.1002/2015GL065989
  • Fjortoft, (2014), IEEE Trans. Geosci. Remote Sensing, 52, pp. 2172, 10.1109/TGRS.2013.2258402
  • (2000), vol. 69
  • Fu, (1994), J. Geophys. Res. Oceans, 99, pp. 24369, 10.1029/94JC01761
  • GEOSS,GEOSS Water Services for Data and Maps Engineering Report GEOSS Architecture Implementation Pilot Phase 6 Version 0.6, report 31 pp, March 2014, doi:10.13140/2.1.2623.1364.
  • Gómez-Enri, (2009), SPIE Newsroom, pp. 1
  • Gómez-Enri, (2010), IEEE Geosci. Remote Sensing Lett., 7, pp. 474, 10.1109/LGRS.2009.2039193
  • Gómez-Enri, (2015), Adv. Space Res., 55, pp. 1590, 10.1016/j.asr.2014.12.039
  • Gómez-Enri, (2016), IEEE Trans. Geosci. Remote Sensing, 54, pp. 5455, 10.1109/TGRS.2016.2565472
  • Gómez-Enri, (2017), Adv. Space Res
  • Gommenginger, (2011)
  • González-Ortegón, (2012), Aquatic Sci., 74, pp. 455, 10.1007/s00027-011-0240-5
  • González-Ortegón, (2010), Estuarine Coastal Shelf Sci., 87, pp. 311, 10.1016/j.ecss.2010.01.013
  • Göttl, (2016), Remote Sensing, 8, pp. 885, 10.3390/rs8110885
  • Han, (2012), Sci. Rep., 2, pp. 1010, 10.1038/srep01010
  • Han, (2017), Remote Sensing Environ., 198, pp. 244, 10.1016/j.rse.2017.06.005
  • Hossain, F., Srinivasan, M., Peterson, C., Andral, A., et al., 2017. Engaging the User Community for advancing Societal Applications of The Surface Water Ocean Topography Mission, Report, 6 pp, American Meteorological Society, doi:10.1175/BAMS-D-17-0161.1
  • Huang, (2018), Remote Sensing Environ., 211, pp. 112, 10.1016/j.rse.2018.04.018
  • Høyer, J.L., Bøvith, T., 2005. Validation and applications of near-real time altimetry data for operational oceanography in coastal and shelf seas, in Proceedings from the ENVISAT symposium, September 6-10, 2004, Salzburg, Austria, ESA SP-572.
  • Idris, (2017), Remote Sensing, 9, pp. 603, 10.3390/rs9060603
  • Jarihani, (2013), J. Hydrol., 505, pp. 78, 10.1016/j.jhydrol.2013.09.010
  • Jiang, (2012), Int. J. Digital Earth, 5, pp. 266, 10.1080/17538947.2012.658685
  • Kilgus, (1989)
  • Lambin, (2010), Marine Geodesy, 33, pp. 4, 10.1080/01490419.2010.491030
  • Lerch, (1979), J. Geophys. Res. Solid Earth, 84, pp. 3897, 10.1029/JB084iB08p03897
  • Li, (2018), Remote Sensing, 10, pp. 657, 10.3390/rs10040657
  • Lillibridge, (2013), Oceanography, 26, pp. 8, 10.5670/oceanog.2013.18
  • Marsh, (1976), J. Geodesy, 50, pp. 291, 10.1007/BF02521967
  • McConathy, (1987), Johns Hopkins APL Technical Digest, 8, pp. 170
  • Ménard, (2003), Marine Geodesy, 26, pp. 131, 10.1080/714044514
  • Mercier, (2010), pp. 4
  • Michailovsky, (2012), Hydrol. Earth Syst. Sci., 16, pp. 2181, 10.5194/hess-16-2181-2012
  • Moore, (2018), Adv. Space Res., 62, pp. 1497, 10.1016/j.asr.2017.12.015
  • Mroczek, A., Jacobs, G., 2015. Nanosats for radar altimetry. in 29th Annual AIAA/USU Conference on Small Satellites, Logan, Utah.
  • Navarro, (2012), Sensors, 12, pp. 1398, 10.3390/s120201398
  • Nguy-Robertson, A., May, J., Dartevelle, S., Birkett, C., Lucero, E., Russo, T., et al., 2018. Inferring elevation variation of lakes and reservoirs from areal extents: calibrating with altimeter and in situ data. vol. 9. Remote Sensing Applications: Society and Environment, January 2018, pp. 116–125.
  • Nielsen, (2015), Remote Sens. Environ., 171, pp. 162, 10.1016/j.rse.2015.10.023
  • Nielsen, K., Stenseng L., Villadsen H., Andersen O.B., Knudsen, P., 2016. Altimetry for inland waters, Living Planet Symposium. In: L. Ouwehand (Ed.), Proceedings of the conference held 9–13 May 2016 in Prague, Czech Republic. ESA-SP Volume 740, ISBN: 978-92-9221-305-3, p. 132.
  • Parrinello, (2018), Adv. Space Res, 10.1016/j.asr.2018.04.014
  • Passaro, M., 2017. User Manual - COSTA v1.0 - DGFI-TUM Along Track Sea Level Product for ERS-2 and Envisat (1996-2010) in the Mediterranean Sea and in the North Sea. Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), München, 7 pp, hdl:10013/epic.50369.d001.
  • Passaro, (2014), Remote Sensing Environ., 145, pp. 173, 10.1016/j.rse.2014.02.008
  • Passaro, M., Cipollini, P., Vignudelli, S., Quartly, G.D., Snaith, H.M., 2015. ALES Jason-2 Coastal Altimetry Version 1. Ver. 1. PO.DAAC, CA, USA. Dataset accessed at https://podaac.jpl.nasa.gov.
  • Peng, (2018), Marine Geodesy, 41, pp. 99, 10.1080/01490419.2017.1381656
  • Peng, (2006), Ocean Modelling, 14, pp. 1, 10.1016/j.ocemod.2006.03.005
  • Philippart M.E., Gebraada A., 2002 Assimilating satellite altimeter data in operational sea level and storm surge forecasting, In: Proceeding of the Second International Conference on EuroGOOS. Elseviers Oceanography Series, vol. 66, pp. 469-479. doi:10.1016/S0422-9894(02)80053-8.
  • Raney, (1998), IEEE Trans. Geosci. Rem. Sens., 36, pp. 1578, 10.1109/36.718861
  • Resti, (1999), ESA Bull., 98
  • Richard, J., Enjolras, V., Rys, L., Vallon, J., Nann, I., Escudier, P., 2008, July. Space altimetry from nano-satellites: payload feasibility, missions and system performances. In: Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International (Vol. 3, pp. III-71). IEEE.
  • Ricko, (2012), J. Appl. Remote Sensing, 6, pp. 061710, 10.1117/1.JRS.6.061710
  • Rodríguez, E., 2016. Surface Water and Ocean Topography Mission Project Science Requirements Document., Jet PropulsionLaboratory, California Institute of Technology, JPL D-61923; March 2016; 28 p. Available online: https://swot.jpl.nasa.gov/documents.htm.
  • Rodriguez, (2017)
  • Roscher, (2017), Remote Sensing Environ., 201, pp. 148, 10.1016/j.rse.2017.07.024
  • Ruhi, (2018), Nat. Sustain., 1, pp. 198, 10.1038/s41893-018-0047-7
  • Schaeffer, (2012), Marine Geodesy, 35, pp. 3, 10.1080/01490419.2012.718231
  • Scharroo, (2016), Ocean Sci., 12, pp. 471, 10.5194/os-12-471-2016
  • Scharroo, R., Leuliette, E.W., Lillibridge, J.L., Byrne, D., Naeije, M.C., Mitchum, G.T., 2013. RADS: consistent multi-mission products. In Proceedings of the Symposium on 20 Years of Progress in Radar Altimetry, Venice, 20–28 September 2012. European Space Agency Special Publication, ESA SP-710, 1–4.
  • Scharroo, (2005), Eos, Trans. Am. Geophys. Union, 86, pp. 366, 10.1029/2005EO400004
  • Schwatke, (2015), Hydrol. Earth System Sci., 19, pp. 4345, 10.5194/hess-19-4345-2015
  • Scozzari, (2012), Geophys. Res. Lett., 39, 10.1029/2011GL050237
  • Shah, (2017), IEEE Geosci. Remote Sensing Lett., 14, pp. 1840, 10.1109/LGRS.2017.2737949
  • Snaith, H., Scharroo, R., Naeije, M., 2006. Just-in-time altimetry: international collaboration in provision of altimetry datasets, Proceedings of the Symposium on 15 Years of Progress in Radar Altimetry, 13-18 March 2006, Venice, Italy (ESA SP-614, July 2006).
  • Stacy, (2012)
  • Tapley, (1982), J. Geophys. Res. Oceans, 87, pp. 3179, 10.1029/JC087iC05p03179
  • Tourian, M.J., Elmi, O., Shafaghi, Y., Sneeuw, N., 2016. HydroSat: a repository of global water cycle products from spaceborne geodetic sensors. Poster. OSTS meeting 2016, La Rochelle, France (01.11.–04.11.).
  • Verron, (2015), Marine Geodesy, 38, pp. 2, 10.1080/01490419.2014.1000471
  • Vignudelli, (2011), pp. 217
  • (2011)
  • Villadsen, (2016), J. Hydrol., 537, pp. 234, 10.1016/j.jhydrol.2016.03.051
  • Vu, (2018), Remote Sensing, 10, pp. 93, 10.3390/rs10010093
  • Vuglinskiy, (2009), Global Terrestrial Observing System (GTOS) Publication, 59, pp. 28
  • WMO, 2010. Manual on Stream Gauging, vol. 1, n. 1044, World Meteorological Organization, Geneva, 245 pp.
  • Walker, D., Barry, R., 1997. The Navy GEOSAT follow-on altimeter-a true dual use technology. IEEE Aerospace Conference, Snowmass at Aspen, CO, 1997, vol.3, pp. 71–82. doi: 10.1109/AERO.1997.574853.
  • Woodworth, (2016), Geosci. Data J., 3, pp. 50, 10.1002/gdj3.42
  • Xu, (2018), Remote Sensing, 10, pp. 282, 10.3390/rs10020282
  • Yuan, (2017), China. Remote Sensing Lett., 8, pp. 399, 10.1080/2150704X.2016.1278309
  • Zheng, Y., 1999. The GANDER microsatellite radar altimeter constellation for global sea state monitoring. In: Paper presented at 13th AIAA/USU Conference on Small Satellite. Logan, Utah: AIAA, 1999.
  • Rio, (2011), J. Geophys. Res. Oceans, 116, 10.1029/2010JC006505