An Overview of the Generalized Gardner Equation: Symmetry Groups and Conservation Laws

  1. Bruzón, M. S. 1
  2. Gandarias, M. L. 1
  3. de la Rosa, R. 1
  1. 1 Departamento de Matemáticas, Universidad de Cádiz, Cádiz, Spain
Libro:
A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems

Editorial: Springer

ISSN: 2195-9994 2196-0003

ISBN: 9783319785110 9783319785127

Año de publicación: 2018

Páginas: 7-26

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-319-78512-7_2 GOOGLE SCHOLAR lock_openAcceso abierto editor

Objetivos de desarrollo sostenible

Resumen

In this paper we study the generalized variable-coefficient Gardner equations of the form u t  + A(t)f(u)u x  + C(t)f(u)2 u x  + B(t)u xxx  + Q(t)F(u) = 0. This family of equations includes many equations considered in the literature. Some conservation laws are derived by applying the multipliers method. The use of the equivalence group of this class allows us to perform an exhaustive study and a simple and clear formulation of the results. We study the equation from the point of view of Lie symmetries in partial differential equations. Finally, we calculate exact travelling wave solutions of the equation by using the simplest equation method.

Referencias bibliográficas

  • Abdel-Gawad, H. I., & Tantawy, M. (2014). Exact solutions of the Shamel-Korteweg-de Vries equation with time dependent coefficients. Information Sciences Letters, 3(3), 103–109.
  • Adem, K. R., & Khalique, C. M. (2012). Exact solutions and conservation laws of Zakharov-Kuznetsov modified equal width equation with power law nonlinearity. Nonlinear Analysis: Real World Applications, 13, 1692–1702.
  • Anco, S. C. (2017). Generalization of Noether’s theorem in modern form to non-variational partial differential equations. In Recent progress and modern challenges in applied mathematics, modeling and computational science. Fields institute communications (pp. 79–130). New York: Springer.
  • Anco, S. C. (2017). On the incompleteness of Ibragimov’s conservation law theorem and its equivalence to a standard formula using symmetries and adjoint symmetries. Symmetry, 9(33), 1–28.
  • Anco, S. C., Avdonina, E. D., Gainetdinova, A., Galiakberova, L. R., Ibragimov, N. H., & Wolf, T. (2016). Symmetries and conservation laws of the generalized Krichever-Novikov equation. Journal of Physics A: Mathematical and Theoretical, 49, 105201–105230.
  • Anco, S. C., & Bluman, G. (2002). Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classifications. European Journal of Applied Mathematics, 13, 545–566.
  • Anco, S. C., & Bluman, G. (2002). Direct construction method for conservation laws of partial differential equations. Part II: General treatment. European Journal of Applied Mathematics, 13, 567–585.
  • Avdonina, E. D., & Ibragimov, N. H. (2013). Conservation laws and exact solutions for nonlinear diffusion in anisotropic media. Communications in Nonlinear Science and Numerical Simulation, 18, 2595–2603.
  • Bozhkov, Y., Dimas, S., & Ibragimov, N. H. (2013). Conservation laws for a coupled variable-coefficient modified Korteweg-de Vries system in a two-layer fluid model. Communications in Nonlinear Science and Numerical Simulation, 18, 1127–1135.
  • Bruzón, M. S., & de la Rosa, R. (2014). Analysis of the symmetries and conservation laws of a Gardner equation. In AIP Conference Proceedings of ICNAAM, Rhodes, Greece.
  • Bruzón, M. S., Gandarias, M. L., & de la Rosa, R. (2014). Conservation laws of a family reaction-diffusion-convection equations. In Localized excitations in nonlinear complex systems. Nonlinear systems and complexity (Vol. 7). Basel: Springer International Publishing.
  • Bruzón, M. S., Garrido, T. M., & de la Rosa, R. (2016). Conservation laws and exact solutions of a generalized Benjamin-Bona-Mahony-Burgers equation. Chaos, Solitons and Fractals, 89, 578–583.
  • de la Rosa, M. L., & Bruzón, M. S. (2016). On the classical and nonclassical symmetries of a generalized Gardner equation. Applied Mathematics and Nonlinear Sciences, 1(1), 263–272.
  • de la Rosa, R., Gandarias, M. L., & Bruzón, M. S. (2016). On symmetries and conservation laws of a Gardner equation involving arbitrary functions. Applied Mathematics and Computation, 290, 125–134.
  • de la Rosa, R., Gandarias, M. L., & Bruzón, M. S. (2016). Equivalence transformations and conservation laws for a generalized variable-coefficient Gardner equation. Preprint. Communications in Nonlinear Science and Numerical Simulation, 40, 71–79.
  • Freire, I. L., & Sampaio, J. C. S. (2014). On the nonlinear self-adjointness and local conservation laws for a class of evolution equations unifying many models. Communications in Nonlinear Science and Numerical Simulation, 19, 350–360.
  • Gandarias, M. L. (2011). Weak self-adjoint differential equations. Journal of Physics A: Mathematical and Theoretical, 44, 262001 (6 pp.).
  • Hong, B., & Lu, D. (2012). New exact solutions for the generalized variable-coefficient Gardner equation with forcing term. Applied Mathematics and Computation, 219, 2732–2738.
  • Hubert, M. B., Betchewe, G., Doka, S. Y., & Crepin, K. T. (2014). Soliton wave solutions for the nonlinear transmission line using the Kudryashov method and the G ′ ∕ G $$\left (G'/G\right )$$ -expansion method. Applied Mathematics and Computation, 239, 299–309.
  • Ibragimov, N. H. (2006). The answer to the question put to me by LV Ovsiannikov 33 years ago. Archives of ALGA, 3, 53–80.
  • Ibragimov, N. H. (2007). A new conservation theorem. Journal of Mathematical Analysis and Applications, 333, 311–328.
  • Ibragimov, N. H. (2007). Quasi-self-adjoint differential equations. Archives of ALGA, 4, 55–60.
  • Ibragimov, N. H. (2011). Nonlinear self-adjointness and conservation laws. Journal of Physics A: Mathematical and Theoretical, 44, 432002 (8 pp.).
  • Ibragimov, N. K. (1985). Transformation groups applied to mathematical physics. Dordrecht: Reidel.
  • Johnpillai, A. G., & Khalique, C. M. (2010). Group analysis of KdV equation with time dependent coefficients. Applied Mathematics and Computation, 216, 3761–3771.
  • Johnpillai, A. G., & Khalique, C. M. (2011). Conservation laws of KdV equation with time dependent coefficients. Communications in Nonlinear Science and Numerical Simulation, 16, 3081–3089.
  • Kudryashov, N. A. (2005). Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons and Fractals, 24, 1217–1231.
  • Kudryashov, N. A. (2010). Meromorphic solutions of nonlinear ordinary differential equations. Communications in Nonlinear Science and Numerical Simulation, 15, 2778–2790.
  • Kudryashov, N. A. (2015). Painlevé analysis and exact solutions of the Korteweg-de Vries equation with a source. Applied Mathematics Letters, 41, 41–45.
  • Kudryashov, N. A., & Loguinova, N. B. (2008). Extended simplest equation method for nonlinear differential equations. Applied Mathematics and Computation, 205, 396–402.
  • Molati, M., & Ramollo, M. P. (2012). Symmetry classification of the Gardner equation with time-dependent coefficients arising in stratified fluids. Communications in Nonlinear Science and Numerical Simulation, 17, 1542–1548.
  • Olver, P. (1993). Applications of Lie groups to differential equations. New York: Springer.
  • Ovsyannikov, L. V. (1982). Group analysis of differential equations. New York: Academic.
  • Tracinà, R. (2014). On the nonlinear self-adjointness of the Zakharov-Kuznetsov equation. Communications in Nonlinear Science and Numerical Simulation, 19, 337–382.
  • Tracinà, R. (2015). Nonlinear self-adjointness: a criterion for linearization of PDEs. Journal of Physics A: Mathematical and Theoretical, 48, 06FT01 (10 pp.).
  • Tracinà, R., Bruzón, M. S., Gandarias, M. L., & Torrisi, M. (2014). Nonlinear self-adjointness, conservation laws, exact solutions of a system of dispersive evolution equations. Communications in Nonlinear Science and Numerical Simulation, 19, 3036–3043.
  • Tracinà, R., Freire, I. L., & Torrisi, M. (2016). Nonlinear self-adjointness of a class of third order nonlinear dispersive equations. Communications in Nonlinear Science and Numerical Simulation, 32, 225–233.
  • Wang, G. W., Liu, X. G., & Zhang, Y. (2013). Symmetry reduction, exact solutions and conservation laws of a new fifth-order nonlinear integrable equation. Communications in Nonlinear Science and Numerical Simulation, 18, 2313–2320.
  • Wei, L. (2015). Conservation laws for a modified lubrication equation. Nonlinear Analysis: Real World Applications, 26, 44–55.
  • Wolf, T. (1993). An efficiency improved program LIEPDE for determining Lie-symmetries of PDEs. In Proceedings of Modern Group Analysis: Advances Analytical and Computational Methods in Mathematical Physics (pp. 377–385).
  • Zhang, L. H., Dong, L. H., & Yan, L. M. (2008). Construction of non-travelling wave solutions for the generalized variable-coefficient Gardner equation. Applied Mathematics and Computation, 203, 784–791.