A nonlinear generalization of the Camassa-Holm equation with peakon solutions

  1. Bruzón, María S. 2
  2. Gandarias, María L. 2
  3. Recio, Elena 12
  4. Anco, Stephen C. 1
  1. 1 Department of Mathematics and Statistics. Brock University St. Catharines, Ontario, L2S 3A1, Canada
  2. 2 Department of Mathematics. Faculty of Sciences, University of Cádiz Puerto Real, Cádiz 11510, Spain
Actas:
10th AIMS International Conference (Madrid, Spain)

Año de publicación: 2015

Tipo: Aportación congreso

DOI: 10.3934/PROC.2015.0029 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

A nonlinearly generalized Camassa-Holm equation, depending an arbitrary nonlinearity power p 6= 0, is considered. This equation reduces to the Camassa-Holm equation when p = 1 and shares one of the Hamiltonian structures of the Camassa- Holm equation. Two main results are obtained. A classification of point symmetries is presented and a peakon solution is derived, for all powers p 6= 0.

Referencias bibliográficas

  • M. S. Alber, (1994), <em>Lett. Math. Phys.</em>, 32, pp. 137, 10.1007/BF00739423
  • S. C. Anco, (1994), <em>Lett. Math. Phys.</em>, 32, pp. 137
  • G. W. Bluman, (2002), Springer
  • R. Camassa, (1994), <em>Adv. Appl. Mech.</em>, 31, pp. 1, 10.1016/S0065-2156(08)70254-0
  • R. Camassa, (1993), <em>Phys. Rev. Lett.</em>, 71, pp. 1661, 10.1103/PhysRevLett.71.1661
  • C. S. Cao, (2004), <em>J. Dyn. Diff. Eqs.</em>, 16, pp. 167, 10.1023/B:JODY.0000041284.26400.d0
  • A. F. Cheviakov, (2007), <em>Comp. Phys. Comm.</em>, 176, pp. 48, 10.1016/j.cpc.2006.08.001
  • A. Constantin, (2000), <em>Ans. Inst. Fourier (Grenoble)</em>, 50, pp. 321, 10.5802/aif.1757
  • A. Constantin, (1998), <em>Acta Math.</em>, 181, pp. 229, 10.1007/BF02392586
  • A. Constantin, (2000), <em>Math. Z.</em>, 33, pp. 75, 10.1007/PL00004793
  • A. Constantin, (1998), <em>Ann. Scuola Norm. Sup. Pisa</em>, 26, pp. 303
  • A. Degasperis, (2002), <em>Theor. Math. Phys.</em> <strong>133</strong> (2002), 133, pp. 1463, 10.1023/A:1021186408422
  • M. Fisher, (1999), <em>Phys. Lett. A</em>, 259, pp. 371, 10.1016/S0375-9601(99)00466-1
  • B. Fuchssteiner, <em>Physica D</em>, 4, pp. 47, 10.1016/0167-2789(81)90004-X
  • D. D. Holm, (2005), <em>J. Nonlinear Math. Phys.</em>, 12, pp. 380, 10.2991/jnmp.2005.12.s1.31
  • A. N. W. Hone, (2003), <em>Inverse Problems</em>, 19, pp. 129, 10.1088/0266-5611/19/1/307
  • P. J. Olver, (1993), Springer-Verlag