Controlador ILOS para el seguimiento de caminos en línea recta de un vehículo autónomo subacuático

  1. Yunier Valeriano-Medina
  2. Anailys Hernández-Julián
  3. Luis Hernández Santana
Journal:
Revista Científica de Ingeniería Electrónica, Automática y Comunicaciones

ISSN: 0258-5944 1815-5928

Year of publication: 2015

Volume: 36

Issue: 2

Pages: 15-28

Type: Article

More publications in: Revista Científica de Ingeniería Electrónica, Automática y Comunicaciones

Abstract

Autonomous underwater vehicles (AUV) represents a topic of great interest to the scientific community worldwide. The guidance system is vital for the development of tasks without human intervention. In this research is designed a type PI controller for tracking paths straight from the HRC-AUV (vehicle used in this research), reducing the tracking error perpendicular to the path despite the effect of sea disturbances. The adjustment of gains of the controller is made based on the geometry of the way forward and the characteristics of the vehicle. The validity of the proposal is found through simulation, which is confirmed that the controller ILOS performance exceeds that of the strategy is implemented at present in the vehicle.

Bibliographic References

  • Lekkas, Anastasios M. (2014). Guidance and path-planning systems for autonomous. The Norwegian Institute of Technology.
  • Fjellstad, Ola-Erik. (1994). Control of unmanned underwater vehicle in six degrees of freedom a quaternion feedback approach. The Norwegian Institute of Technology.
  • Antonelli, Gianluca, Fossen, Thor I., Yoerger, Dana R.. (2008). Springer Handbook of Robotics. Springer-Verlag.
  • Garcia-Garcia, Delvis. (2012). Wave filtering for heading control of an AUV based on passive observer. Indian Journal of Geo-Marine Sciences. 41. 540-549
  • Valeriano-Medina, Yunier. (2013). Dynamic model for an autonomous underwater vehicle based on experimental data. Mathematical and Computer Modelling of Dynamical Systems : Methods, Tools and Applications in Engineering and Related Sciences. 19. 175-200
  • Martinez, Alain. (2013). Arquitectura de hardware y software para AUV, resultados experimentales. Revista Iberoamericana de Automática e Informática industrial. 10. 333-343
  • Fossen, Thor. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley & Sons.
  • (1950). Nomenclature for treating the motion of a submerged body through a fluid. SNAME.
  • Jalving, Bjørn, Storkensen, Nils. (1995). The control system of an autonomous underwater. Modeling, Identification and Control. 15. 107-117
  • Isiyel, Kadir. (2003). Autopilot design and guidance control of ULISAR UUV (unmanned underwater vehicle). Middle East Technical University.
  • Børhaug, Even, Pavlov, Alexey, Pettersen, Kristin Y. (2008). Decision and Control, 2008. CDC 2008. 47th IEEE Conference on. IEEE.
  • Healey, Anthony. J. (2006). Guidance laws, obstacle avoidance and artificial potential functions. 69. 43
  • Peascock, John. A. (1983). Two-dimensional goodness-of-fit testing in astronomy. Monthly Notices Royal Astronomy. 202. 615-627