Estudio sobre la estrategia de guiado L1 para el seguimiento de caminos rectos y curvos en UAV

  1. Luís Hernández-Morales
  2. Yunier Valeriano-Medina
  3. Anailys Hernández-Julián
  4. Luís Hernández-Santana
Journal:
Revista Científica de Ingeniería Electrónica, Automática y Comunicaciones

ISSN: 0258-5944 1815-5928

Year of publication: 2017

Volume: 38

Issue: 3

Pages: 14-25

Type: Article

More publications in: Revista Científica de Ingeniería Electrónica, Automática y Comunicaciones

Abstract

The development of autonomous vehicles is a subject of great interest in the international scientific community. For the accomplishment of missions without human intervention it is vitally to have an algorithm or guiding law. In this paper we present the results obtained by simulation with the guidance algorithm based on distance L1, during the tracking of straight and circular paths by an autonomous aerial vehicle (UAV). The algorithm produces a lateral acceleration command that is interpreted by the balancing controller to achieve convergence to the path. The results of the simulation demonstrate the good performance of the algorithm, for both straight and circular paths.

Bibliographic References

  • Hagen, I. Autopilot Design for Unmanned Aerial Vehicles.
  • Martinez-Jimenez, BL. (2012). Identificación de un vehículo aéreo no tripulado. Revista de Ingeniería Electrónica, Automática y Comunicaciones. 33. 45-55
  • Hernández-Santana, L. Levantamiento fotogramétrico de la UBPC "Desembarco del Granma" utilizando aviones no tripulados, solución de bajo costo para la agricultura nacional. VII Científica Internacional sobre Desarrollo Agropecuario y Sostenibilidad. AGROCENTO 2016. Santa Clara. 8 de Abril 2016.
  • Sujit, PB, Saripalli, S, Sousa, JB. (2014). Unmanned aerial vehicle path following: A survey and analysis of algorithms for fixed-wing unmanned aerial vehicles. IEEE Control Systems. 34. 42-59
  • Park, S, Deyst, J, How, JP. (2007). Performance and lyapunov stability of a nonlinear path-following guidance method. J. Guidance, Control, Dyn. 30. 1718-1728
  • Curry, R, Lizarraga, M, Mairs, B, Elkaim, GH. L2, an improved line of sight guidance law for uavs. American Control Conference (ACC). Washington DC. 2013.
  • Breivik, M, Fossen, TI. (2008). Underwater vehicles. InTech. Vienna.
  • Valeriano-Medina, Y, Hernández, A, Hernández, L. (2015). Controlador ilos para el seguimiento de caminos en línea recta de un vehículo autónomo subacuático. Revista de Ingeniería Electrónica, Automática y Comunicaciones. 36. 15-28
  • Gryte, K. High Angle of Attack Landing of an Unmanned Aerial Vehicle.
  • Fossen, TI. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control.Nueva York,. John Wiley & Sons. Estados Unidos.
  • Fossen, TI. (2013). Mathematical models for control of aircraft and satellites. 3. Department of Engineering Cybernetics, NTNU.
  • Pamadi, BN. (2003). Performance, Stability, Dynamics, and Control of Airplanes. American Institute of Aeronautics and Astronautics.
  • Mathisen, SH, Fossen, TI, Johansen, TA. Non-linear model predictive control for guidance of a fixed-wing uav in precision deep stall landing. 2015 International Conference on Unmanned Aircraft Systems (ICUAS). Denver. 2015.
  • Mathisen, SH, Gryte, K, Fossen, TI, Johansen, TA. (2016). AIAA Infotech@ Aerospace. AIAA. California.
  • (2016). Developer/apm open source autopilot.