Modelling and Control of Wind Turbines

  1. Fernández, Luis M. 1
  2. García, Carlos Andrés 1
  3. Jurado, Francisco 2
  1. 1 Department of Electrical Engineering, University of Cadiz, EPS Algeciras, Avda. Ramon Puyol s/n, 11202, Algeciras (Cádiz), Spain
  2. 2 Department of Electrical Engineering, University of Jaen, EPS Linares, Alfonso X, Linares, 23700, Jaén, Spain
Libro:
Handbook of Wind Power Systems

Editorial: Springer Link

ISSN: 1867-8998 1867-9005

ISBN: 9783642410796 9783642410802

Año de publicación: 2013

Páginas: 443-508

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-642-41080-2_14 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

This chapter provides a basic understanding of modelling of wind turbines, including both the mechanical and electrical systems, and control schemes that enable a suitable operation of the wind turbines. An overview of the most widely used wind turbine concepts is performed and their models for integration in large power system dynamic simulations are described. The wind turbine concepts studied are: fixed-speed squirrel cage induction generator (FS-SCIG), wound rotor induction generator (WRIG) with variable rotor resistance (VRR), doubly fed induction generator (DFIG), and direct drive synchronous generator (DDSG).

Referencias bibliográficas

  • Achilles S, Pöller M (2003) Direct drive synchronous machine models for stability assessment of wind farms. In: Proceedings of 4th international workshop on large-scale integration of wind power and transmission networks for offshore wind farms, Billund, Denmark, pp 1–9
  • Ackermann T (2005) Wind power in power systems. Wiley, Chichester
  • Akhmatov V (2003) Analysis of dynamic behaviour of electric power systems with large amount of wind power. PhD thesis, Rgs. Lyngby, Denmark: Electric Power Engineering, Orsted-DTU, Technical University of Denmark
  • Anaya-Lara O, Hughes FM, Jenkins N, Strbac G (2006) Rotor flux magnitude and angle control strategy for doubly fed induction generators. Wind Energy 9(5):479–495
  • Boldea I (2005) Synchronous generators. CRC Press, Boca Raton
  • Bolik SM (2004) Modelling and analysis of variable speed wind turbines with induction generator during grid faults. Thesis, Aalborg, Denmark: Institute of Energy Technology, Aalborg University
  • Chinchilla M, Arnalte S, Burgos JC, Rodriguez JL (2006) Power limits of grid-connected modern wind energy systems. Renew Energy 31(9):1455–1470
  • CIGRE (2000) Modeling new forms of generation and storage. CIGRE Technical Brochure, TF 38.01.10
  • Ekanayake JB, Holdsworth L, Wu X, Jenkins N (2003) Dynamic modeling of doubly fed induction generator wind turbines. IEEE Trans Power Syst 18(2):803–809
  • Fernandez LM, Garcia CA, Jurado F (2008) Comparative study on the performance of control systems for doubly fed induction generator (DFIG) wind turbines operating with power regulation. Energy 33(9):1438–1452
  • Fernandez LM, Garcia CA, Jurado F (2010) Operating capability as a PQ/PV node of a direct-drive wind turbine based on a permanent magnet synchronous generator. Renew Energy 35(6):1308–1318
  • Fernandez LM, Garcia CA, Saenz JR, Jurado F (2009) Equivalent models of wind farms by using aggregated wind turbines and equivalent winds. Energy Convers Manage 50(3):691–704
  • Hansen AD, Hansen LH (2007) Wind turbine concept market penetration over 10 Years (1995–2004). Wind Energy 10:81–97
  • Heier S (1998) Grid integration of wind energy conversion systems. Wiley, Chichester
  • Kundur P (1994) Power system stability and control. McGraw-Hill, New York
  • Li H, Chen Z (2008) Overview of different wind generator systems and their comparisons. IET Renew Power Gener 2(2):123–138
  • Lubosny Z (2003) Wind turbine operation in electric power systems. Springer, Berlin Heidelberg
  • Martinsa M, Perdana A, Ledesma P, Agneholm E, Carlsona O (2007) Validation of fixed speed wind turbine dynamic models with measured data. Renew Energy 32(8):1301–1316
  • Morimoto S, Takeda Y, Hirasa T (1990) Current phase control methods for permanent magnet synchronous motors. IEEE Trans Power Electron 5(2):133–139
  • Muller S, Deicke M, De Doncker RW (2002) Doubly fed induction generator systems for wind turbines. IEEE Ind Appl Mag 8:26–33
  • Muyeen SM et al (2007) Comparative study on transient stability analysis of wind turbine generator system using different drive train models. IET Renew Power Gener 1(2):131–141
  • Nunes MVA, Pecas JA, Zürn HH, Bezerra UH, Almeida RG (2004) Influence of the variable-speed wind generators in transient stability margin of the conventional generators integrated in electrical grids. IEEE Trans Energy Convers 19(4):692–701
  • Papathanassiou SA, Papadopoulos MP (2001) Mechanical stresses in fixed-speed wind turbines due to network disturbances. IEEE Trans Energy Convers 16(4):361–367
  • Peña R, Clare JC, Asher GM (1996) Doubly fed induction generator using back-to-back PWM converters and its application to variable speed wind-energy generation. IEE Proc Electr Power Appl 143(3):231–241
  • Ramtharan G, Jenkins N, Anaya-Lara O (2007) Modelling and control of synchronous generators of wide-range variable-speed wind turbines. Wind Energy 10:231–246
  • Santos D, Arnaltes S, Rodriguez JL (2008) Reactive power capability of doubly fed asynchronous generators. Electr Power Syst Res 78(11):1837–1840
  • Slootweg JG, Kling WL (2004) Modelling wind turbines for power system dynamics simulations: an overview. Wind Eng 28(1):7–26
  • Slootweg JG, Polinder H, Kling WL (2003) Representing wind turbine electrical generating systems in fundamental frequency simulations. IEEE Trans Energy Convers 18(4):516–524
  • Slootweg JG, de Haan SWH, Polinder H, Kling WL (2003) General model for representing variable speed wind turbines in power system dynamics simulations. IEEE Trans Power Syst 18(1):144–151
  • Sørensen P, Hansen AD, Lov F, Blaabjerg F, Donovan MH (2005) Wind farm models and control strategies, report Risø-R-1464(EN). Risø National Laboratory, Roskilde
  • Tapia A, Tapia G, Ostolaza JX, Saenz JR (2003) Modeling and control of a wind driven doubly fed induction generator. IEEE Trans Energy Convers 18(2):194–204