Calibración ojo a mano de un brazo robótico industrial con cámaras 3D de luz estructurada
- Ignacio Diaz-Cano 1
- Fernando M. Quintana 1
- Pedro L. Galindo 1
- Arturo Morgado-Estevez 1
- 1 Universidad de Cádiz, España
ISSN: 1697-7920
Any de publicació: 2022
Volum: 19
Número: 2
Pàgines: 154-163
Tipus: Article
Altres publicacions en: Revista iberoamericana de automática e informática industrial ( RIAI )
Resum
Computer vision is gaining more and more importance in the world of industrial robotics, since it is necessary to carry out increasingly precise and autonomous tasks, which is why a more exact positioning of the robot is needed. This requires the support of a vision system that is the one that gives the robot precision in its pose, calibrating said system with respect to the robot. This work presents a simple methodology to approach this form of calibration, called hand-eye, using a structured light 3D camera that obtains information from the real world and a six-axis industrial robotic arm. The method uses the RANSAC algorithm for the determination of the planes, which represents a notable reduction in errors, since the coordinates of the points sought come from planes adjusted to thousands of points. This allows the system to always have the ability to obtain a transformation matrix from the coordinates of the camera to the base of the robot. In addition, the proposed method is ideal for making a precision comparison between cameras, due to its simplicity and speed of use. In this study, the resulting error analysis was performed using two dfferent 3D cameras: a basic one (Kinect 360) and an industrial one (Zivid ONE + M).
Referències bibliogràfiques
- Ali, I., Suominen, O., Gotchev, A., Morales, E. R., jun 2019. Methods for simultaneous robot-world-hand-eye calibration: A comparative study. Sensors (Switzerland) 19 (12), 2837. https://doi.org/10.3390/s19122837
- Cui, H., Sun, R., Fang, Z., Lou, H., Tian, W., Liao, W., 2020. A novel flexible two-step method for eye-to-hand calibration for robot assembly system. Measurement and Control 53 (9-10), 2020-2029. https://doi.org/10.1177/0020294020964842
- de Klerk, E., 2002. Aspects of semidefinite programming interior point algorithms and selected applications. Applied Optimization. https://doi.org/10.1007/b105286
- Derpanis, K. G., 2010. Overview of the RANSAC Algorithm. Tech. rep., EECS.
- Dias, J., de Almeida, A., Araujo, H., Batista, J., 1991. Improving camera calibration by using multiple frames in hand-eye robotic systems. https://doi.org/10.1109/IROS.1991.174464
- Eriksson, T., Hansen, H. N., Gegeckaite, A., 2008. On the use of industrial robots in microfactories. The International Journal of Advanced Manufacturing Technology 38 (5), 479-486. https://doi.org/10.1007/s00170-007-1116-7
- Featherstone, R., 2007. Robot dynamics algorithms . https://doi.org/10.1007/978-1-4899-7560-7
- Fischler, M., Bolles, R., 1981. https://doi.org/10.1145/358669.358692
- Hu, J.-S., Chang, Y.-J., 2013. Automatic Calibration of Hand-Eye-Workspace and Camera Using Hand-Mounted Line Laser. https://doi.org/10.1109/TMECH.2012.2212717
- Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A., 2011. Kinect- Fusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera. In: UIST '11 Proceedings of the 24th annual ACM symposium on User interface software and technology, uist '11 proceedings of the 24th annual acm symposium on user interface software and technology Edition. ACM, pp. 559-568. https://doi.org/10.1145/2047196.2047270
- Koide, K., Menegatti, E., 2019. General Hand-Eye Calibration Based on Reprojection Error Minimization. https://doi.org/10.1109/LRA.2019.2893612
- Lasi, H., Kemper, H.-G., Feld, D.-I. T., Homann, D.-H. M., 2014. Industry 4.0. Business & Information Systems Engineering 4, 239-242. https://doi.org/10.1007/s12599-014-0334-4
- Li, W., Dong, M., Lu, N., Lou, X., Sun, P., 2018. Simultaneous Robot-World and Hand-Eye Calibration without a Calibration Object. https://doi.org/10.3390/s18113949
- Liu, X., Madhusudanan, H., Chen, W., Li, D., Ge, J., Ru, C., Sun, Y., 2021. Fast eye-in-hand 3-d scanner-robot calibration for low stitching errors. IEEE Transactions on Industrial Electronics 68 (9), 8422-8432. https://doi.org/10.1109/TIE.2020.3009568
- Low, K.-L., 2004. Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration. Tech. rep., University of North Carolina.
- Lu, Y., jun 2017. Industry 4.0: A survey on technologies, applications and open research issues. https://doi.org/10.1016/j.jii.2017.04.005
- Lundberg, I., Bjorkman, M., Ogren, P., 2014. Intrinsic camera and hand-eye calibration for a robot vision system using a point marker. https://doi.org/10.1109/HUMANOIDS.2014.7041338
- Magnenat-Thalmann, N., 2020. Preface the Visual Computer (vol 36 issues 10-12). https://doi.org/10.1007/s00371-020-01965-8
- Munchen, T. U., 2009. HandEyeCalibration. URL: http://campar.in.tum.de/Chair/HandEyeCalibration
- Newcombe, R. A., Fitzgibbon, A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohi, P., Shotton, J., Hodges, S., 2011. KinectFusion: Real-time dense surface mapping and tracking. https://doi.org/10.1109/ISMAR.2011.6092378
- Pachtrachai, K., Vasconcelos, F., Chadebecq, F., Allan, M., Hailes, S., Pawar, V., Stoyanov, D., 2018. Adjoint Transformation Algorithm for Hand-Eye Calibration with Applications in Robotic Assisted Surgery. https://doi.org/10.1007/s10439-018-2097-4
- Pham, B. T., Tien Bui, D., Prakash, I., 2018. Bagging based Support Vector Machines for spatial prediction of landslides. https://doi.org/10.1007/s12665-018-7268-y
- Rusinkiewicz, S., Levoy, M., 2001. Ecient variants of the ICP algorithm. Proceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM, 145-152. https://doi.org/10.1109/IM.2001.924423
- Shiu, Y. C., Ahmad, S., 1989. Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB . https://doi.org/10.1109/70.88014
- Sorkine-Hornung, O., Rabinovich, M., 2017. Least-Squares Rigid Motion Using SVD. Tech. rep., Department of Computer Science, ETH Zurich. URL: http://www.igl.ethz.ch/projects/ARAP/
- Taryudi, Wang, M.-S., 2018. Eye to hand calibration using ANFIS for stereo vision-based object manipulation system. https://doi.org/10.1109/ICASI.2017.7988217
- Toan, N. V., Khoi, P. B., 2018. A svd-least-square algorithm for manipulator kinematic calibration based on the product of exponentials formula †. Journal of Mechanical Science and Technology 32 (11), 5401-5409. https://doi.org/10.1007/s12206-018-1038-3
- Tsai, R. Y., Lenz, R. K., 1989. A New Technique for Fully Autonomous and Effient 3D Robotics Hand/Eye Calibration. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 5 (3). https://doi.org/10.1109/70.34770
- Uhlig, F., 1992. Review of topics in matrix analysis. https://doi.org/10.1016/0024-3795(92)90075-L
- Wang, Z., Fan, J., Jing, F., Deng, S., Zheng, M., Tan, M., 2020. An efficient Calibration Method of Line Structured Light Vision Sensor in Robotic Eyein- Hand System. https://doi.org/10.1109/JSEN.2020.2975538
- Werner, D., Al-Hamadi, A., Werner, P., 2014. Truncated Signed Distance Function: Experiments on Voxel Size. https://doi.org/10.1007/978-3-319-11755-3_40
- Xu, F., Fan, S., Yang, Q., Zhang, C.,Wang, Y., 2019.Welding robotic hand-eye calibration method based on structured light plane. https://doi.org/10.23919/ChiCC.2019.8865169
- Yang, M. Y., F¨orstner, W., 2010. Plane Detection in Point Cloud Data. Tech. rep., Department of Photogrammetry Institute of Geodesy and Geoinformation University of Bonn. URL: http://www.ipb.uni-bonn.de/technicalreports/
- Zhang, Z., Zhang, L., Yang, G.-Z., 2017. A computationally ecient method for hand-eye calibration. https://doi.org/10.1007/s11548-017-1646-x
- Zhao, Z., Liu, Y., 2009. A hand-eye calibration algorithm based on screw motions. https://doi.org/10.1017/S0263574708004608
- Zou, Y., Chen, X., 2018. Hand-eye calibration of arc welding robot and laser vision sensor through semidefinite programming. https://doi.org/10.1108/IR-02-2018-0034