Analysis and Modeling of Sunscreen Ingredients’ Behavior in an Aquatic Environment

  1. Ruiz-Gutiérrez, Gema
  2. Rodríguez-Romero, Araceli
  3. Tovar-Sánchez, Antonio
  4. Viguri Fuente, Javier R.
  1. 1 Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de los Castros 46, 39005 Santander, Cantabria, Spain
  2. 2 Departamento de Química Analítica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus Universitario Río San Pedro, 11519 Puerto Real, Spain
  3. 3 Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Universitario Río San Pedro, 11519 Puerto Real, Spain
Revista:
Oceans

ISSN: 2673-1924

Año de publicación: 2022

Volumen: 3

Número: 3

Páginas: 340-363

Tipo: Artículo

DOI: 10.3390/OCEANS3030024 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Oceans

Resumen

Sunscreens have become a product based on increasingly complex formulations that include, among many ingredients, a mixture of UV filters to provide optimal sun ultraviolet radiation protection. A significant group of scientific works deals with the impact of UV filters in aquatic media. However, the knowledge of the mechanism and kinetics of the compound’s direct release, fate, and its transformation and interaction with living organisms is necessary to assess its environmental occurrence and behavior and to predict potential and real impacts on the aquatic environment. This review outlines the existing analysis and modeling of the release and behavior of sunscreen’s ingredients in the marine environment, including aquatic organisms. The physical-chemical properties, photodegradation, and release kinetics of particles and chemicals into the water are studied by hydrodynamic and kinetic models. Direct photolysis of chemicals is modeled as pseudo-first-order kinetics, while the indirect pathway by the reaction of sunscreen with reactive oxygen species is described as second-order kinetics. The interaction of UV filters with marine biota is studied mainly by toxicokinetic models, which predict their bio-accumulation in the organisms’ tissues. These models consider the chemicals’ uptake and excretion, as well as their transfer between different internal animal organs, as a first-order kinetic process. The studies analyzed in the present work represent a driver of change for the beauty and personal care industry, in order to seek new ecological alternatives through the application of R&D tactics. View Full-Text

Referencias bibliográficas

  • Cosmetics Industry—Statistics & Facts https://www.statista.com/topics/3137/cosmetics-industry/#dossierKeyfigures
  • Global Sunscreen Ingredients Market Report 2021, Featuring Key Players Ashland Inc., BASF, Evonik Industries, l’Oreal SA and Royal DSM. 30 September 2021 08:43 ET | Source: Research and Markets https://www.researchandmarkets.com/categories/personal-care#hmc
  • 10.1371/journal.pone.0065451
  • 10.1016/j.watres.2014.09.013
  • 10.1021/acs.est.9b02739
  • 10.3390/nano12040699
  • 10.3389/fenvs.2020.00101
  • 10.1016/j.envint.2015.06.007
  • FDA, (2019)
  • Ingredient Trends and Innovation in Sun Protection https://www.researchgate.net/publication/317545165_Ingredients_Trends_and_Innovation_in_Sun_Protection
  • 10.3390/app11156882
  • 10.1002/ieam.4411
  • McCall, (2018), pp. 389
  • 10.1186/s12989-016-0154-4
  • 10.1016/j.talanta.2017.05.002
  • 10.1016/j.envpol.2020.116263
  • 10.1007/s13762-018-1960-z
  • 10.1021/acs.est.6b05211
  • 10.1016/j.scitotenv.2011.03.040
  • 10.1016/j.envpol.2010.02.012
  • 10.1016/j.jhazmat.2021.127941
  • 10.1002/etc.4147
  • 10.1016/j.envpol.2017.06.064
  • 10.1016/j.chemosphere.2016.03.080
  • 10.1016/j.scitotenv.2013.05.090
  • 10.1016/j.chemosphere.2011.03.019
  • 10.1002/jat.4210
  • 10.1016/j.aquatox.2019.105355
  • 10.1016/j.envpol.2018.11.029
  • 10.1016/j.scitotenv.2018.04.180
  • 10.1016/j.envint.2016.09.024
  • 10.1016/j.chemosphere.2015.12.068
  • 10.1016/j.scitotenv.2016.10.146
  • 10.1016/j.envpol.2013.06.003
  • 10.1016/j.envsoft.2009.08.011
  • 10.1021/es9015553
  • 10.1021/es7029637
  • 10.1016/0166-445X(90)90019-L
  • 10.1021/acs.est.0c07446
  • 10.1021/acs.est.8b03725
  • 10.1111/j.1530-9290.2011.00429.x
  • 10.1177/0960327110391387
  • 10.1016/j.envpol.2011.08.023
  • 10.1016/j.watres.2013.07.017
  • 10.1016/j.watres.2012.09.045
  • 10.1016/j.jhazmat.2011.02.072
  • 10.1016/j.scitotenv.2011.09.012
  • 10.1016/S0021-9673(03)01331-1
  • 10.1016/j.jphotochem.2017.10.023
  • 10.1016/j.watres.2013.07.009
  • 10.1016/j.envpol.2011.03.003
  • 10.1016/j.apcatb.2013.04.046
  • 10.1016/j.envpol.2017.02.049
  • 10.1021/es5020696
  • 10.1016/j.cej.2021.132684
  • 10.1016/j.jwpe.2021.102327
  • 10.1016/j.jhazmat.2020.123591
  • 10.1016/j.jwpe.2021.102282
  • 10.1007/s40201-018-0309-3
  • 10.1007/s11356-015-5631-z
  • 10.1016/j.jhazmat.2014.07.041
  • 10.1016/j.cej.2015.04.078
  • 10.1021/es903757q
  • 10.1016/j.jpba.2009.05.003
  • 10.1016/j.microc.2016.03.020
  • 10.1016/j.scitotenv.2014.01.053
  • 10.3390/nano7010021
  • 10.1016/j.watres.2013.07.034
  • 10.1021/es00015a013
  • 10.1016/j.molcata.2011.10.002
  • 10.1021/es301027a
  • 10.1016/j.envpol.2013.10.011
  • 10.7773/cm.v32i12.1030
  • 10.1016/j.aca.2007.11.018
  • 10.1021/es501939c
  • 10.1002/wer.1637
  • 10.1016/j.marpolbul.2020.111078
  • 10.1016/j.chemosphere.2017.09.144
  • 10.1038/s41598-017-08013-x
  • 10.1371/journal.pone.0030321
  • 10.3389/fmars.2021.665548
  • 10.1016/j.aca.2013.12.033
  • 10.1016/j.scitotenv.2012.03.089
  • 10.1016/j.scitotenv.2020.142486
  • 10.1111/phpp.12439
  • 10.1289/ehp.10966
  • 10.1016/j.chemosphere.2020.127190
  • 10.1007/s11356-012-0964-3
  • 10.1016/j.watres.2012.12.005
  • 10.1021/es902987d
  • 10.1016/j.watres.2009.06.005
  • 10.1007/s10661-021-09626-6
  • 10.1007/s43630-021-00101-2
  • 10.1016/j.envpol.2021.118011
  • 10.1021/es071445r
  • 10.1016/j.scitotenv.2016.06.197
  • 10.1016/B978-0-12-813736-9.00011-8
  • 10.1186/s12302-014-0036-z
  • 10.1016/j.envpol.2019.06.043
  • 10.1016/j.biochi.2009.06.019
  • 10.1002/etc.5620111205
  • 10.1016/j.envint.2021.106625
  • 10.1016/j.envpol.2019.05.003
  • 10.3389/fmars.2015.00114
  • 10.1016/j.aquatox.2016.07.021
  • 10.1016/j.scitotenv.2019.03.164
  • 10.1016/0025-326X(93)90497-8
  • 10.1007/s10646-014-1255-1
  • 10.1016/j.envpol.2018.06.101
  • 10.1016/j.aquatox.2014.05.011
  • 10.1016/j.envpol.2011.08.034
  • 10.3354/meps07451
  • 10.3354/meps140091
  • 10.1016/j.scitotenv.2019.07.016
  • 10.1016/j.aquatox.2015.07.020
  • 10.1021/es0496470
  • 10.1016/j.aquatox.2017.02.012