Diseño IoT y validación de sistema de medida para generación fotovoltaica

  1. Angelino dos Santos, Thiago 1
  2. Gomes de Freitas, Filipe
  3. Carvalho Gonçalves, Diego Lima
  4. Fernández-Ramírez, Luis Miguel 2
  1. 1 Federal Institute do Ceará
  2. 2 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

Revue:
Ingenius: Revista de Ciencia y Tecnología

ISSN: 1390-860X 1390-650X

Année de publication: 2022

Titre de la publication: july-december

Número: 28

Pages: 44-52

Type: Article

DOI: 10.17163/INGS.N28.2022.04 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

D'autres publications dans: Ingenius: Revista de Ciencia y Tecnología

Résumé

The use of photovoltaic (PV) systems for electricity generation is constantly growing in Brazil. With the reduction in the price of PV modules and the implementation of the electric power compensation system by the power distributor, the consumer is investing in PV microgeneration to reduce the electricity bill. This article aims to develop an embedded system in the context of the Internet of Things (IoT). Having an IoT monitoring system applied to a grid-connected PV system in an educational institution helps teach concepts such as IoT and PV generation. The system is based on the ESP32 development board for acquiring DC voltage and current generated by a 1.35 kWp PV system connected to the grid and installed at the IFCE. This proposal offers a low-cost educational solution using open source and programmable hardware, which sends the data to a database in the cloud, enabling remote access worldwide. Then, using the data analysis methodology, it was possible to validate the values measured with the inverter installed with an error below 1% for the voltage and current acquired during one day. With this result, it is concluded that the designed IoT system can be used for measurement in PV systems.

Références bibliographiques

  • [1] A. M. Vallêra and M. C. Brito, “Meio século de história fotovoltaica,” Gazeta de Física, vol. 1, no. 2, p. 17, 2006. [Online]. Available: https://bit.ly/2WgwXgP
  • [2] J. T. Pinho, M. A. Galdino et al., Manual de engenharia para sistemas fotovoltaicos. CEPEL - CRESESB, 2014, vol. 1. [Online]. Available: https://bit.ly/3OAYu3Z
  • [3] H. E. Murdock, D. Gibb, T. Andre, J. L. Sawin, A. Brown, L. Ranalder, U. Collier, C. Dent, B. Epp, C. Hareesh Kumar et al., “Renewables 2021-global status report,” Global ENR Report 2022, 2021. [Online]. Available: https://t.ly/PW1K
  • [4] B. Rubim, “Tudo o que você precisa saber sobre a revisão da ren 482,” Ecori Energia Solar, vol. 20, p. 12, 2018. [Online]. Available: https://bit.ly/3btlyTZ
  • [5] R. Vitalli, “Os 10 pilares de indústria 4.0 - artigos - indústria 4.0,” 2018, accessed: 2022-05-14. [Online]. Available: https://t.ly/J9i6
  • [6] A. Prudenzi, A. Fioravanti, and M. Regoli, “A low-cost iot solution for power availability improvement in hospitals,” in International Conference on Renewable Energies and Power Quality (ICREPQ’18), Salamanca (Spain), 21th to 23th March, 2018. [Online]. Available:
  • https://doi.org/10.24084/repqj16.389
  • [7] C. Gamarra, M. Ortega, E. Montero, and J. Guerrero, “Innovative planning synergies between manufacturing processes and microgrids,” Renewable Energy and Power Quality Journal, vol. 1, no. 14, pp. 939–944, 2016. [Online]. Available: https://doi.org/10.24084/repqj14.526
  • [8] N. S. Kumar, B. Vuayalakshmi, R. J. Prarthana, and A. Shankar, “Iot based smart garbage alert system using arduino uno,” in 2016 IEEE region 10 conference (TENCON). IEEE, 2016, pp. 1028–1034. [Online]. Available: https://doi.org/10.1109/TENCON.2016.7848162
  • [9] F. T. Brito, S. C. Jucá, and P. C. Carvalho, “Controllogger: A remote monitoring system for decentralized renewable energy sources,” Renewable Energy and Power Quality Journal, vol. 10, p. 432, 2012. [Online]. Available: https://doi.org/10.24084/repqj10.432
  • [10] R. I. Pereira, P. C. Carvalho, and S. C. Jucá, “Wifi data acquisition system and online monitoring applied to thermoelectric microgeneration modules,” Renewable Energy and Power Quality Journal, no. 13, pp. 1–6, 2015. [Online]. Available: https://doi.org/10.24084/repqj13.370
  • [11] A. Saveliev, D. Malov, M. Tamashakin, and V. Budkov, “Service and multimedia data transmission in iot networks using hybrid communication devices,” in MATEC Web of Conferences, vol. 113. EDP Sciences, 2017, p. 02010. [Online]. Available: https://doi.org/10.1051/matecconf/201711302010
  • [12] J. Purba and D. Wahyudin, “Bluetooth low energy (ble) based power window system,” in IOP Conference Series: Materials Science and Engineering, vol. 384, no. 1. IOP Publishing, 2018, p. 012029. [Online]. Available: https://doi.org/10.1088/1757-899X/384/1/012029
  • [13] J. I. Vega-Luna, F. J. Sánchez-Rangel, G. Salgado-Guzmán, J. F. Cosme-Aceves, V. N. Tapia-Vargas, and M. A. Lagos-Acosta, “Red de monitorización para automatizar el sistema de enfriamiento de un centro de datos,” Ingenius. Revista de Ciencia y Tecnología, no. 24, pp. 87–96, 2020. [Online]. Available: https://doi.org/10.17163/ings.n24.2020.09
  • [14] R. I. Pereira, S. C. Jucá, P. C. Carvalho, and C. P. Souza, “Iot network and sensor signal conditioning for meteorological data and photovoltaic module temperature monitoring,” IEEE Latin America Transactions, vol. 17, no. 06, pp. 937–944, 2019. [Online]. Available:
  • https://doi.org/10.1109/TLA.2019.8896816
  • [15] A. Maier, A. Sharp, and Y. Vagapov, “Comparative analysis and practical implementation of the esp32 microcontroller module for the internet of things,” in 2017 Internet Technologies and Applications (ITA). IEEE, 2017, pp. 143–148. [Online]. Available: https://doi.org/10.1109/ITECHA.2017.8101926
  • [16] A. H. Abdullah, S. Sudin, M. I. M. Ajit, F. S. A. Saad, K. Kamaruddin, F. Ghazali, Z. A. Ahmad, and M. A. A. Bakar, “Development of esp32-based wi-fi electronic nose system for monitoring lpg leakage at gas cylinder refurbish plant,” in 2018 international conference on computational approach in smart systems design and applications (ICASSDA). IEEE, 2018, pp. 1–5. [Online]. Available: https://doi.org/10.1109/ICASSDA.2018.8477594
  • [17] I. Allafi and T. Iqbal, “Design and implementation of a low cost web server using esp32 for real-time photovoltaic system monitoring,” in 2017 IEEE electrical power and energy conference (EPEC). IEEE, 2017, pp. 1–5. [Online]. Available: https://doi.org/10.1109/EPEC.2017.8286184
  • [18] S. B. Biswas and M. T. Iqbal, “Solar water pumping system control using a low cost esp32 microcontroller,” in 2018 IEEE Canadian conference on electrical & computer engineering (CCECE). IEEE, 2018, pp. 1–5. [Online]. Available: https://doi.org/10.1109/CCECE.2018.8447749
  • [19] V. Leite, J. Batista, F. Chenlo, and J. L. Afonso, “Low-cost instrument for tracing current-voltage characteristics of photovoltaic modules,” International Conference on Renewable Energies and Power Quality (ICREPQ’12), 2012. [Online]. Available: https://doi.org/10.24084/repqj10.565
  • [20] R. I. Pereira, I. M. Dupont, P. C. Carvalho, and S. C. Jucá, “Iot embedded linux system based on raspberry pi applied to real-time cloud monitoring of a decentralized photovoltaic plant,” Measurement, vol. 114, pp. 286–297, 2018. [Online]. Available: https://doi.org/10.1016/j.measurement.2017.09.033
  • [21] R. I. S. Pereira, S. C. S. Juca, and P. C. M. de Carvalho, “Online monitoring system for electrical microgeneration via embedded wifi modem,” IEEE Latin America Transactions, vol. 14, no. 7, pp. 3124–3129, 2016. [Online]. Available: https://doi.org/10.1109/TLA.2016.7587611
  • [22] E. Perge, “Practical application of computer software in visual education.” Acta Didactica Napocensia, vol. 1, no. 2, pp. 50–55, 2008. [Online]. Available: https://bit.ly/39Nx4sZ
  • [23] M. Muttillo, T. de Rubeis, D. Ambrosini, G. Barile, and G. Ferri, “Sensor monitoring system for pv plant with active load,” in 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI). IEEE, 2019, pp. 124–127. [Online]. Available: https://doi.org/10.1109/IWASI.2019.8791248
  • [24] N. Rouibah, L. Barazane, A. Mellit, B. Hajji, and A. Rabhi, “A low-cost monitoring system for maximum power point of a photovoltaic system using iot technique,” in 2019 International conference on wireless technologies, embedded and intelligent systems (WITS). IEEE, 2019, pp. 1–5. [Online]. Available: https://doi.org/10.1109/WITS.2019.8723724
  • [25] R. I. Pereira, S. C. Jucá, and P. C. Carvalho, “Iot embedded systems network and sensors signal conditioning applied to decentralized photovoltaic plants,” Measurement, vol. 142, pp. 195–212, 2019. [Online]. Available: https://doi.org/10.1016/j.measurement.2019.04.085
  • [26] F. Harrou, A. Dairi, B. Taghezouit, and Y. Sun, “An unsupervised monitoring procedure for detecting anomalies in photovoltaic systems using a one-class support vector machine,” Solar Energy, vol. 179, pp. 48–58, 2019. [Online]. Available: https://doi.org/10.1016/j.solener.2018.12.045
  • [27] F. R. V. Alves, R. C. de SOUSA, and F. C. F. Fontenele, “Didactical engineering of the second generation: A proposal of the design and a teaching resource with the support of the geogebra software in brazil.” Acta Didactica Napocensia, vol. 13, no. 2, pp. 142–156, 2020. [Online]. Available: https://doi.org/10.24193/adn.13.2.10
  • [28] F. R. V. Alves, “The professional didactics (pd) and didactics of sciences (ds) in brazil: some implications for the professionalization of the science teacher.” Acta Didactica Napocensia, vol. 11, no. 2, pp. 105–120, 2018. [Online]. Available: https://doi.org/10.24193/adn.11.2.9
  • [29] W. Pavon, E. Inga, and S. Simani, “Optimal distribution network planning applying heuristic algorithms considering allocation of PV rooftop generation,” 2020 Ieee Andescon, Andescon 2020, 2020. [Online]. Available: https://doi.org/10.1109/ANDESCON50619.2020.9272062
  • [30] RASPBERRY, “Buy a Raspberry Pi - Raspberry Pi,” accessed: 2022-06-16. [Online]. Available: https://t.ly/66e0
  • [31] I. Costa, J. R. Sousa, S. C. Jucá, R. Pereira, and A. Alexandria, “Monitoramento iot de planta de bombeamento fotovoltaico utilizando sistema embarcado linux,” Enciclopedia Biósfera, vol. 18, no. 37, pp. 349–363, 2021. [Online]. Available: https://doi.org/10.18677/EnciBio_2021C30
  • [32] ARDUINO, “Arduino hardware | arduino,” 2022, accessed: 2022-06-16. [Online]. Available: https://t.ly/2qmR
  • [33] ESPRESSIF, “Development boards | espressif systems,” accessed: 2022-06-16. [Online]. Available: https://t.ly/mIGV
  • [34] AWS, “Aws iot - internet of things - amazon web services,” 2022, accessed: 2022-05-02. [Online]. Available: https://t.ly/gyWf
  • [35] CLOUDMQTT, “Cloudmqtt - hosted message broker of internet of things,” accessed: 2022-05-02. [Online]. Available: https://t.ly/FTrN
  • [36] UBIDOTS, “Iot platform internet of things ubidots,” accessed: 2022-05-02. [Online]. Available: https://t.ly/RYIE
  • [37] THINGSPEAK, “Iot analytics - thingspeak internet of things,” accessed: 2022-05-02. [Online]. Available: https://t.ly/tnqU