Fármacos epigenéticos para el tratamiento de enfermedades en humanos

  1. Ana Cotán García
Revista:
MoleQla: revista de Ciencias de la Universidad Pablo de Olavide

ISSN: 2173-0903

Año de publicación: 2022

Número: 46

Tipo: Artículo

Otras publicaciones en: MoleQla: revista de Ciencias de la Universidad Pablo de Olavide

Resumen

La epigenética se define como el estudio de las modificaciones que son estables y heredables a corto plazo y que no implican cambios en la secuencia del ADN. Una desregulación en el patrón epigenético del material genético de una o varias células puede dar lugar al desarrollo de patologías. Es por ello por lo que se han desarrollado fármacos epigenéticos dirigidos contra las principales moléculas implicadas en los procesos epigenéticos. En esta revisión se describen los principales fármacos epigenéticos basados en inhibidores de las enzimas histona desacetilasas y metiltransferasas.

Referencias bibliográficas

  • Russo, V. E. A. et al. (1996) Epigenetic Mechanisms of Gene Regulation. Plainview, N.Y: Cold Spring Harbor Laboratory Press. Print.
  • Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature Genetics, 33(3S), 245–254. https://doi.org/10.1038/ng1089W.-K.
  • Cheng, Y., He, C., Wang, M. et al. (2019). Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Sig Transduct Target Ther 4(62). https://doi.org/10.1038/s41392-019-0095-0
  • Egger, G., Liang, G., Aparicio, A. et al. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463. https://doi.org/10.1038/nature02625
  • Gatla, H. R., Muniraj, N., Thevkar, P., Yavvari, S., Sukhavasi, S., & Makena, M. R. (2019). Regulation of Chemokines and Cytokines by Histone Deacetylases and an Update on Histone Decetylase Inhibitors in Human Diseases. International journal of molecular sciences, 20(5), 1110. https://doi.org/10.3390/ijms20051110
  • Portela, A., Esteller, M. (2010). Epigenetics modifications and human disease. Nat Biotechnol 28, 1057–1068. https://doi.org/10.1038/nbt.1685
  • Allis, C., Jenuwein, T. (2016). The molecular hallmarks of epigenetic control. Nat Rev Genet 17, 487–500. https://doi.org/10.1038/nrg.2016.59
  • Suraweera A, O’Byrne KJ and Richard DJ. (2018). CombinationTherapy with Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi. Front. Oncol. 8(92). doi: 10.3389/fonc.2018.00092
  • Nativio, R., Donahue, G., Berson, A. et al. (2018). Dysregulation of the epigenetic landscape of normal aging in Alzheimer’s disease. Nat Neuroscience 21, 497–505. https://doi.org/10.1038/s41593-018-0101-9
  • Lixing Zhou, Mingming Zhang et al. (2018). Faecalibacterium prausnitzii Produces Butyrate to Maintain Th17/Treg Balance and to Ameliorate Colorectal Colitis by Inhibiting Histone Deacetylase 1, Inflammatory Bowel Diseases, 24 (9), 1926–1940, https://doi.org/10.1093/ibd/izy182
  • Liu, J., Livingston, M.J., Dong, G. et al. (2018). Histone deacetylase inhibitors protect against cisplatin-induced acute kidney injury by activating autophagy in proximal tubular cells. Cell Death Dis, 322 (9). https://doi.org/10.1038/s41419-018-0374-7
  • Xu, W., Parmigiani, R. & Marks, P. (2007). Inhibidores de histona desacetilasa: mecanismos moleculares de acción. Oncogen 26, 5541–5552. https://doi.org/10.1038/sj.onc.1210620
  • Food and Drug Administration, Center for Drug Evaluation and Research. Retrieved June 1, 2022, from https://www.fda.gov.ph/
  • Bondarev AD, Attwood MM,Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB. (2021) Recent developments of HDAC inhibitors: Emergingindications and novel molecules. Br J Clin Pharmacol,87(12):4577–4597. https://doi.org/10.1111/bcp.14889BONDAREVY AL.4597
  • Liqin Wang, Rodrigo Leite de Oliveira et al. (2018). An Acquired Vulnerability of Drug-Resistant Melanoma with Therapeutic Potential, Cell, 173(6). 1413-1425.e14, https://doi.org/10.1016/j.cell.2018.04.012.
  • Liu, J., Livingston, M.J., Dong, G. et al. (2018). Histone deacetylase inhibitors protect against cisplatin-induced acute kidney injury by activating autophagy in proximal tubular cells. Cell Death Dis (322). https://doi.org/10.1038/s41419-018-0374-7
  • Simona-Adriana Manea, Mihaela-Loredana Antonescu, Ioana Madalina Fenyo, Monica Raicu, Maya Simionescu, Adrian Manea. (2018). Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes, Redox Biology, 16, 332-343, https://doi.org/10.1016/j.redox.2018.03.011.
  • Stephen J Kent, Jeanette C Reece, Janka Petravic, Alexey Martyushev, Marit Kramski, et al. (2013) The search for an HIV cure: tackling latent infection, The Lancet Infectious Diseases, 13 (7) 614-621, https://doi.org/10.1016/S1473-3099(13)70043-4.
  • Afaloniati H, Angelopoulou K, Giakoustidis A et al (2020). HDAC1/2 Inhibitor Romidepsin Suppresses DEN-Induced Hepatocellular Carcinogenesis in Mice. Onco Targets Ther. 15(13), 5575-5588. doi: 10.2147/OTT.S250233.
  • Nitin Jain & Olatoyosi Odenike (2010) Emerging role of the histone deacetylase inhibitor romidepsin in hematologic malignancies, Expert Opinion on Pharmacotherapy, 11(18), 3073- 3084, DOI: 10.1517/14656566.2010.534779
  • Hegarty SV, Togher KL, O'Leary E, Solger F, Sullivan AM, O'Keeffe GW. (2017). Romidepsin induces caspase-dependent cell death in human neuroblastoma cells. Neurosci Lett. 13(653), 12-18. doi: 10.1016/j.neulet.2017.05.025
  • Cleophas, M.C.P., Crişan, T.O., Klück, V. et al. (2019). Romidepsin suppresses monosodium urate crystal-induced cytokine production through upregulation of suppressor of cytokine signaling 1 expression. Arthritis Res Ther 21 (50). https://doi.org/10.1186/s13075-019-1834-x
  • Kaczmarek JV, Bogan CM, Pierce JM, Tao YK, Chen SC, Liu Q, Liu X, Boyd KL, Calcutt MW, Bridges TM, Lindsley CW et al. (2021). HDAC Inhibitor Belinostat Effectively Eradicates Vitreous Seeds Without Retinal Toxicity In Vivo in a Rabbit Retinoblastoma Model. Invest Ophthalmol Vis Sci. 62(14), 8. doi:
  • Lu P, Gu Y, Li L, Wang F, Yang X, Yang Y. (2019) Belinostat suppresses cell proliferation by inactivating Wnt/β-catenin pathway and promotes apoptosis through regulating PKC pathway in breast cancer. Artif Cells Nanomed Biotechnol. 47(1), 3955-3960. doi: 10.1080/21691401.2019.1671855.
  • Quah S, Subramanian G, Sampath P. (2021). Repurposing Belinostat for Alleviation of Atopic Dermatitis. Dermatol Ther (Heidelb). 11(3) 655-660. doi: 10.1007/s13555-021-00527-7.
  • Jesus G. Berdeja, Jacob P. Laubach, Joshua Richter, Steve Stricker, Andrew Spencer, Paul G. Richardson, Ajai Chari. (2021). Panobinostat From Bench to Bedside: Rethinking the Treatment Paradigm for Multiple Myeloma, Clinical Lymphoma Myeloma and Leukemia, 21(11), 752-765, https://doi.org/10.1016/j.clml.2021.06.020.
  • Qin G, Li Y, Xu X, Wang X, Zhang K, Tang Y, Qiu H, Shi D, Zhang C, Long Q, Lee K, Zhai Q, Wang S, Chen M, Deng W. Panobinostat (LBH589) inhibits Wnt/β-catenin signaling pathway via upregulating APCL expression in breast cancer. Cell Signal. 2019 Jul;59:62-75. doi: 10.1016/j.cellsig.2019.03.014. Epub 2019 Mar 14. PMID: 30880222.
  • Chan, T. S., Tse, E., & Kwong, Y. L. (2017). Chidamide in the treatment of peripheral T-cell lymphoma. OncoTargets and therapy, 10, 347–352. https://doi.org/10.2147/OTT.S93528
  • Huang, X., Bi, N., Wang, J., Ren, H., Pan, D., Lu, X. y Wang, L. (2021). Chidamide and Radiotherapy Synergistically Induce Cell Apoptosis and Suppress Tumor Growth and Cancer Stemness by Regulating the MiR-375-EIF4G3 Axis in Lung Squamous Cell Carcinomascarcinomas de células escamosas de pulmón. Revista de oncología ,2021, 4936207. https://doi.org/10.1155/2021/4936207
  • Zhou, H., Han, L., Wang, H., Wei, J., Guo, Z., & Li, Z. (2020). Chidamide Inhibits Glioma Cells by Increasing Oxidative Stress via the miRNA-338-5p Regulation of Hedgehog Signaling. Oxidative medicine and cellular longevity, 2020, 7126976. https://doi.org/10.1155/2020/7126976
  • Copeland RA (2018). Protein methyltransferase inhibitors as precision cancer therapeutics: a decade of discovery, 373 (1748), 20170080. https://doi.org/10.1098/rstb.2017.0080
  • Italiano A, Soria JC, Toulmonde M, Michot JM, Lucchesi C, Varga A, Coindre JM, Blakemore SJ et al. (2018) Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, openlabel, phase 1 study. Lancet. 19(5), 649-659. doi: 10.1016/S1470- 2045(18)30145-1.
  • Jones, PA, Ohtani, H., Chakravarthy, A. et al. (2019). Terapia epigenética en inmuno-oncología. Nat Rev Cancer 19, 151–161 https://doi.org/10.1038/s41568-019-0109-9
  • Stein, EM, Garcia-Manero, G., Rizzieri, DA, Tibes, R., Berdeja, JG, Savona, MR, Jongen-Lavrenic, M., Altman, JK, et al. (2018). The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood, 131 (24), 2661–2669. https://doi.org/10.1182/blood-2017-12-
  • Santini V. Azacitidine: activity and efficacy as an epigenetic treatment of myelodysplastic syndromes. (2009). Expert Rev Hematol. 2(2), 121-7. doi: 10.1586/ehm.09.6