Semiconductor composite materials for energy storage and conversion applications

  1. Tang, PengYi
Dirigida por:
  1. Jordi Arbiol Cobos Director/a
  2. Joan Ramon Morante Lleonart Codirector/a
  3. Jordi Sort Viñas Tutor/a

Universidad de defensa: Universitat Autònoma de Barcelona

Fecha de defensa: 12 de julio de 2018

Tribunal:
  1. Kevin Sivula Presidente/a
  2. Francisco Fabregat Santiago Secretario/a
  3. Juan José Delgado Jaén Vocal

Tipo: Tesis

Teseo: 559714 DIALNET

Resumen

The energy originated from fossil fuels has enabled the remarkable advancement of civilization over the past century. However, fossil fuels are not infinite in supply and they are a source of increasing atmospheric carbon dioxide and the associated abominable environmental effects. Improving the efficiency of the energy storage devices and conversion of solar energy into hydrogen energy via water splitting are key technologies to tackle the serious energy and environmental problems. Earth-abundant, environmental-friendly semiconductors for supercapacitor and water splitting applications have received great attention due to their specific characteristics. It is well established that the capacitive properties of semiconductors are greatly affected by their nanostructure and poor conductivity, leading to a limited energy and power densities. Thus, understanding and manipulating the hierarchical structure at the nanoscale is essential to design composite materials for energy storage with enhanced charge transfer and electrolyte ions transportation abilities. On one hand, in photoelectrochemical water splitting (PEC), the electron-hole recombination in the bulk interfaces plays a determinative role in the catalytic performance. The investigation about modulation of the charge transfer kinetics as well as the energy level and density of surface state upon the modification of a second semiconductor or oxygen evolution catalysts (OEC) could be of great interest. On the other hand, for hydrogen evolution catalysts (HEC), as the identification of structural defects, phase transmission and vacancies presented in the 2D materials play a vital role in optimizing the catalyst for hydrogen evolution reaction (HER) in water splitting. This dissertation is divided into 7 chapters: Chapter 1 is the introduction part, which includes the background of supercapacitors and water splitting and reviews the limited factors affecting the electrochemical properties of semiconductors for supercapacitor and water splitting applications. In Chapter 2 summarizes the applied methodologies in this dissertation. This chapter includes the details about the TEM, STEM, EELS experimental setups, data processing, simulations and general introductions to the electrochemical techniques, such as cyclic voltammetry, electrochemical impedance spectrum as well the electrical circuit model for illustrating the surface states. Specific synthesis procedures and experimental results for every one of the studied nanosystems are presented in Chapters 3-6. Chapter 3 deals with the fabrication of core-branch Fe2O3/PPy nanocomposites as negative electrode for supercapacitor applications as well as the investigation of PPy nanoleaves growth mechanism onto the hematite nanoflakes. In Chapter 4, we have optimized the synthesis conditions, including the ITO thickness, TiO2 thickness, FeNiOOH deposition charge and the post-sintering temperature of ITO/Fe2O3/Fe2TiO5/FeNiOOH nanowire-based photoanodes for water splitting in alkaline electrolyte. The detailed structure has been mainly investigated by TEM and STEM-EELS, while, the charge transfer and reaction kinetic mechanisms were systematically investigated by PEIS. In Chapter 5, we have optimized the chemical bath conditions for synthesising CoFe PBA supported onto Fe2O3/Fe2TiO5 nanowire-based photoanodes for water splitting in acidic electrolyte. The detailed structure has been mainly investigated by TEM and STEM-EELS, while, the charge transfer and reaction kinetic mechanisms were investigated by PEIS. In Chapter 6, we moved the characterization of structural defects, phase transmission, vacancies in 2D materials for HER in water splitting with advanced aberration-corrected dedicated STEM, including HAADF, ABF, EELS-STEM, GPA and HAADF simulation. Finally, Chapter 7 summarizes the general conclusions of this dissertation, along with a brief outlook.