Flujo Sanguíneo Cerebral Durante el Ejercicio de Esprint

  1. Curtelin, David 2
  2. Perez-Valera, Mario 2
  3. Martin-Rincon, Marcos 2
  4. Pérez Suárez, Ismael
  5. Cherouveim, Evgenia D. 1
  6. Torres-Peralta, Rafael 2
  7. Calbet, José A. L. 2
  8. Morales-Alamo, David 2
  1. 1 National and Kapodistrian University of Athens
    info

    National and Kapodistrian University of Athens

    Atenas, Grecia

    ROR https://ror.org/04gnjpq42

  2. 2 Universidad de Las Palmas de Gran Canaria
    info

    Universidad de Las Palmas de Gran Canaria

    Las Palmas de Gran Canaria, España

    ROR https://ror.org/01teme464

Journal:
Kronos: revista universitaria de la actividad física y el deporte

ISSN: 1579-5225

Year of publication: 2016

Volume: 15

Issue: 2

Type: Article

More publications in: Kronos: revista universitaria de la actividad física y el deporte

Abstract

The effect of high-intensity interval training (HIIT) on cerebral blood flow (CBF) and cerebral oxygenation remain unknown. Therefore, we recruited 20 voluntaries who performed one HIIT session (4x30s Wingate tests with 4 minutes recovery between them). We measured frontal lobe (FLO) and Vastus lateralis (VL) oxygenation with NIRS. Middle cerebral artery blood flow velocity (MCAv) was measured by Doppler. MCAv decreased between 5 and 10 % during the first sprint. MCAv decreased slightly more during the subsequent sprints. Nevertheless, FLO remained stable during the first sprint and was only reduced slightly during the second and third Wingate (the fourth was similar to the third). MCAv decreased on each sprint with the reduction of End-tidal carbon dioxide pressure (PETCO2), the latter due to hyperventilation. When subjects stopped pedaling MCAv was dropped markedly. The decrease in MCAv did not produce any functional or relevant effect on frontal lobe oxygenation due to the adjustment of cerebral vascular conductance by the auto-regulatory mechanisms and did not seem to negatively affect performance.

Bibliographic References

  • Aaslid, R., Lindegaard, K. F., Sorteberg, W., & Nornes, H. (1989). Cerebral autoregulation dynamics in humans. Stroke, 20(1), 45-52.
  • Ainslie, P. N., & Duffin, J. (2009). Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol, 296(5), R1473-1495. doi:10.1152/ajpregu.91008.2008
  • Ainslie, P. N., & Ogoh, S. (2010). Regulation of cerebral blood flow in mammals during chronic hypoxia: a matter of balance. Exp Physiol, 95(2), 251-262. doi:10.1113/expphysiol.2008.045575
  • Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., Macdonald, M. J., McGee, S. L., & Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol, 586(1), 151-160. doi:jphysiol.2007.142109 [pii]10.1113/jphysiol.2007.142109
  • Calbet, J. A., & Lundby, C. (2012). Skeletal muscle vasodilatation during maximal exercise in health and disease. J Physiol, 590(Pt 24), 6285-6296. doi:10.1113/jphysiol.2012.241190
  • Calbet, J. A., Mortensen, S. P., Munch, G. D., Curtelin, D., & Boushel, R. (2016). Constant infusion transpulmonary thermodilution for the assessment of cardiac output in exercising humans. Scand J Med Sci Sports, 26(5), 518-527. doi:10.1111/sms.12473
  • Cassaglia, P. A., Griffiths, R. I., & Walker, A. M. (2008). Sympathetic nerve activity in the superior cervical ganglia increases in response to imposed increases in arterial pressure. Am J Physiol Regul Integr Comp Physiol, 294(4), R1255-1261. doi:10.1152/ajpregu.00332.2007
  • Davies, C. T., Di Prampero, P. E., & Cerretelli, P. (1972). Kinetics of cardiac output and respiratory gas exchange during exercise and recovery. J Appl Physiol, 32(5), 618-625.
  • Davis, S. L., Fadel, P. J., Cui, J., Thomas, G. D., & Crandall, C. G. (2006). Skin blood flow influences near-infrared spectroscopy-derived measurements of tissue oxygenation during heat stress. J Appl Physiol (1985), 100(1), 221-224. doi:10.1152/japplphysiol.00867.2005
  • Deegan, B. M., Devine, E. R., Geraghty, M. C., Jones, E., Olaighin, G., & Serrador, J. M. (2010). The relationship between cardiac output and dynamic cerebral autoregulation in humans. J Appl Physiol (1985), 109(5), 1424-1431. doi:10.1152/japplphysiol.01262.2009
  • Gillen, J. B., & Gibala, M. J. (2014). Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab, 39(3), 409-412. doi:10.1139/apnm-2013-0187
  • Hamner, J. W., Tan, C. O., Lee, K., Cohen, M. A., & Taylor, J. A. (2010). Sympathetic control of the cerebral vasculature in humans. Stroke, 41(1), 102-109. doi:10.1161/STROKEAHA.109.557132
  • Harder, D. R., Roman, R. J., Gebremedhin, D., Birks, E. K., & Lange, A. R. (1998). A common pathway for regulation of nutritive blood flow to the brain: arterial muscle membrane potential and cytochrome P450 metabolites. Acta Physiol Scand, 164(4), 527-532.
  • Hermansen, L., & Vaage, O. (1977). Lactate disappearance and glycogen synthesis in human muscle after maximal exercise. Am J Physiol, 233(5), E422-429.
  • Hirasawa, A., Kaneko, T., Tanaka, N., Funane, T., Kiguchi, M., Sorensen, H., . . . Ogoh, S. (2016). Near-infrared spectroscopy determined cerebral oxygenation with eliminated skin blood flow in young males. J Clin Monit Comput, 30(2), 243-250. doi:10.1007/s10877-015-9709-4
  • Huang, S. C., Wong, M. K., Lin, P. J., Tsai, F. C., Fu, T. C., Wen, M. S., . . . Wang, J. S. (2014). Modified high-intensity interval training increases peak cardiac power output in patients with heart failure. Eur J Appl Physiol, 114(9), 1853-1862. doi:10.1007/s00421-014-2913-y
  • Ide, K., Boushel, R., Sorensen, H. M., Fernandes, A., Cai, Y., Pott, F., & Secher, N. H. (2000). Middle cerebral artery blood velocity during exercise with beta-1 adrenergic and unilateral stellate ganglion blockade in humans. Acta Physiol Scand, 170(1), 33-38. doi:10.1046/j.1365-201x.2000.00757.x
  • Ide, K., Eliasziw, M., & Poulin, M. J. (2003). Relationship between middle cerebral artery blood velocity and end-tidal PCO2 in the hypocapnic-hypercapnic range in humans. J Appl Physiol (1985), 95(1), 129-137.
  • Lacewell, A. N., Buck, T. M., Romero, S. A., & Halliwill, J. R. (2014). Postexercise syncope: Wingate syncope test and effective countermeasure. Exp Physiol, 99(1), 172-186. doi:10.1113/expphysiol.2013.075333
  • Lassen, N. A. (1959). Cerebral blood flow and oxygen consumption in man. Physiol Rev, 39(2), 183-238.
  • LeMarbre, G., Stauber, S., Khayat, R. N., Puleo, D. S., Skatrud, J. B., & Morgan, B. J. (2003). Baroreflex-induced sympathetic activation does not alter cerebrovascular CO2 responsiveness in humans. J Physiol, 551(Pt 2), 609-616. doi:10.1113/jphysiol.2003.046987
  • Losa-Reyna, J., Torres-Peralta, R., Henriquez, J. J., & Calbet, J. A. (2015). Arterial to end-tidal Pco2 difference during exercise in normoxia and severe acute hypoxia: importance of blood temperature correction. Physiol Rep, 3(10). doi:10.14814/phy2.12512
  • Lucas, S. J., Tzeng, Y. C., Galvin, S. D., Thomas, K. N., Ogoh, S., & Ainslie, P. N. (2010). Influence of changes in blood pressure on cerebral perfusion and oxygenation. Hypertension, 55(3), 698-705. doi:10.1161/HYPERTENSIONAHA.109.146290
  • Mardimae, A., Balaban, D. Y., Machina, M. A., Battisti-Charbonney, A., Han, J. S., Katznelson, R., . . . Duffin, J. (2012). The interaction of carbon dioxide and hypoxia in the control of cerebral blood flow. Pflugers Arch, 464(4), 345-351. doi:10.1007/s00424-012-1148-1
  • Moraine, J. J., Lamotte, M., Berre, J., Niset, G., Leduc, A., & Naeije, R. (1993). Relationship of middle cerebral artery blood flow velocity to intensity during dynamic exercise in normal subjects. Eur J Appl Physiol Occup Physiol, 67(1), 35-38.
  • Nogueira, R. C., Bor-Seng-Shu, E., Santos, M. R., Negrao, C. E., Teixeira, M. J., & Panerai, R. B. (2013). Dynamic cerebral autoregulat ion changes dur ing sub-maximal handgr ip maneuver . PLoS One, 8 (8) , e70821. doi :10 .1371/ journal .pone.0070821
  • Ogoh, S., & Ainslie, P. N. (2009). Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol (1985), 107(5), 1370-1380. doi:00573.2009 [pii]10.1152/japplphysiol.00573.2009
  • Ogoh, S., Brothers, R. M., Barnes, Q., Eubank, W. L., Hawkins, M. N., Purkayastha, S., . . . Raven, P. B. (2005). The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. J Physiol, 569(Pt 2), 697-704. doi:10.1113/jphysiol.2005.095836
  • Ogoh, S., Dalsgaard, M. K., Yoshiga, C. C., Dawson, E. A., Keller, D. M., Raven, P. B., & Secher, N. H. (2005). Dynamic cerebral autoregulation during exhaustive exercise in humans. Am J Physiol Heart Circ Physiol, 288(3), H1461-1467. doi:00948.2004 [pii]10.1152/ajpheart.00948.2004
  • Querido, J. S., & Sheel, A. W. (2007). Regulation of cerebral blood flow during exercise. Sports Med, 37(9), 765-782. doi:3792 [pii]
  • Rasmussen, P., Dawson, E. A., Nybo, L., van Lieshout, J. J., Secher, N. H., & Gjedde, A. (2007). Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans. J Cereb Blood Flow Metab, 27(5), 1082-1093. doi:9600416 [pii]10.1038/sj.jcbfm.9600416
  • Rasmussen, P., Stie, H., Nielsen, B., & Nybo, L. (2006). Enhanced cerebral CO2 reactivity during strenuous exercise in man. Eur J Appl Physiol, 96(3), 299-304. doi:10.1007/s00421-005-0079-3
  • Rokamp, K. Z., Olesen, N. D., Larsson, H. B., Hansen, A. E., Seifert, T., Nielsen, H. B., . . . Rostrup, E. (2014). Glycopyrrolate does not influence the visual or motor-induced increase in regional cerebral perfusion. Front Physiol, 5, 45. doi:10.3389/fphys.2014.00045
  • Sakamoto, A., Naito, H., & Chow, C. M. (2014). Hyperventilation as a strategy for improved repeated sprint performance. J Strength Cond Res, 28(4), 1119-1126. doi:10.1519/JSC.0b013e3182a1fe5c
  • Schubert, T., Santini, F., Stalder, A. F., Bock, J., Meckel, S., Bonati, L., . . . Wetzel, S. (2011). Dampening of blood-flow pulsatility along the carotid siphon: does form follow function? AJNR Am J Neuroradiol, 32(6), 1107-1112. doi:10.3174/ajnr.A2426
  • Stefanelli, F., Meoli, I., Cobuccio, R., Curcio, C., Amore, D., Casazza, D., . . . Rocco, G. (2013). High-intensity training and cardiopulmonary exercise testing in patients with chronic obstructive pulmonary disease and non-small-cell lung cancer undergoing lobectomy. Eur J Cardiothorac Surg, 44(4), e260-265. doi:10.1093/ejcts/ezt375
  • Yamaguchi, Y., Kashima, H., Fukuba, Y., & Hayashi, N. (2014). Cerebral blood flow and neurovascular coupling during static exercise. J Physiol Sci, 64(3), 195-201. doi:10.1007/s12576-014-0311-1