Quantitative, Spectro-kinetic Analysis of Oxygen in Electron-Beam Sensitive, Multimetallic Oxide Nanostructures

  1. López-Haro, Miguel 1
  2. Gómez-Recio, Isabel 2
  3. Pan, Huiyan 1
  4. Delgado, Juan J 1
  5. Chen, Xiaowei 1
  6. Cauqui, Miguel A 1
  7. Pérez-Omil, José A 1
  8. Ruiz-González, María L 2
  9. Hernando, María 2
  10. Parras, Marina 2
  11. González-Calbet, José M 2
  12. Calvino, José J 1
  1. 1 Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz , Campus Rio San Pedro, 11510-Puerto Real, Cádiz , Spain
  2. 2 Departamento de Quı́ mica Inorgá nica, Facultad de Ciencias Quı́ micas, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria , Madrid 28040 , Spain
Revista:
Microscopy and Microanalysis

ISSN: 1431-9276 1435-8115

Año de publicación: 2023

Volumen: 29

Número: 3

Páginas: 900-912

Tipo: Artículo

DOI: 10.1093/MICMIC/OZAD037 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Microscopy and Microanalysis

Resumen

The oxygen stoichiometry of hollandite, KxMnO2-δ, nanorods has been accurately determined from a quantitative analysis of scanning-transmission electron microscopy (STEM) X-Ray Energy Dispersive Spectroscopy (XEDS) experiments carried out in chrono-spectroscopy mode. A methodology combining 3D reconstructions of high-angle annular dark field electron tomography experiments, using compressed-sensing algorithms, and quantification through the so-called ζ-factors method of XEDS spectra recorded on a high-sensitivity detector has been devised to determine the time evolution of the oxygen content of nanostructures of electron-beam sensitive oxides. Kinetic modeling of O-stoichiometry data provided K0.13MnO1.98 as overall composition for nanorods of the hollandite. The quantitative agreement, within a 1% mol error, observed with results obtained by macroscopic techniques (temperature-programmed reduction and neutron diffraction) validate the proposed methodology for the quantitative analysis, at the nanoscale, of light elements, as it is the case of oxygen, in the presence of heavy ones (K, Mn) in the highly compromised case of nanostructured materials which are prone to electron-beam reduction. Moreover, quantitative comparison of oxygen evolution data measured at macroscopic and nanoscopic levels allowed us to rationalize beam damage effects in structural terms and clarify the exact nature of the different steps involved in the reduction of these oxides with hydrogen.

Información de financiación

Financiadores

  • MCIN/AEI/10
  • University of the Regional Government of Andalusia
  • FEDER

Referencias bibliográficas

  • Allen, (2012), MRS Bull, 37, pp. 47, 10.1557/mrs.2011.331
  • Bambynek, (1972), Rev Mod Phys, 44, pp. 716, 10.1103/RevModPhys.44.716
  • Bote, (2008), Phys Rev A, 77, 10.1103/PhysRevA.77.042701
  • Brown, (1974), Handbook of sectroscopy, pp. 248
  • Burhop, (1955), J Physique Radium, 16, pp. 625, 10.1051/jphysrad:01955001607062500
  • Chung-Hao, (2015), Angew Chem, 127, pp. 2375, 10.1002/ange.201407783
  • Cliff, (1975), J Microscopy, 103, pp. 203, 10.1111/j.1365-2818.1975.tb03895.x
  • Cliff, (1984), J Microscopy, 136, pp. 219, 10.1111/j.1365-2818.1984.tb00530.x
  • Colby, (1968), Advances in X-ray Analysis, pp. 287, 10.1007/978-1-4684-8676-6_22
  • Dal Corso, (2014), Comput Mater Sci, 95, pp. 337, 10.1016/j.commatsci.2014.07.043
  • Danylenko, (2003), Thin Solid Films, 444, pp. 75, 10.1016/S0040-6090(03)01107-6
  • Davó-Quiñonero, (2017), Appl Catal B, 217, pp. 459, 10.1016/j.apcatb.2017.05.095
  • Débart, (2008), Angew Chem Int Ed, 47, pp. 4521, 10.1002/anie.200705648
  • DeGuzman, (1994), Chem Mater, 6, pp. 815, 10.1021/cm00042a019
  • Deng, (2018), Appl Catal B, 239, pp. 214, 10.1016/j.apcatb.2018.08.006
  • Findlay, (2009), Appl Phys Lett, 95, 10.1063/1.3265946
  • Fladischer, (2014), Ultramicroscopy, 136, pp. 26, 10.1016/j.ultramic.2013.07.015
  • Gac, (2007), Appl Catal B, 75, pp. 107, 10.1016/j.apcatb.2007.04.002
  • Gao, (2008), J Phys Chem C, 112, pp. 13134, 10.1021/jp804924f
  • Gazquez, (2017), Mater Sci Semicond Process, 65, pp. 49, 10.1016/j.mssp.2016.06.005
  • Giannozzi, (2009), J Phys: Condens Matter, 21
  • Gomez-Recio, (2020), Chem Commun, 56, pp. 4812, 10.1039/D0CC01888K
  • Gomez-Recio, (2021), ACS Catal, 11, pp. 15026, 10.1021/acscatal.1c04954
  • Gorzkowski, (2004), J Mater Sci, 39, pp. 6735, 10.1023/B:JMSC.0000045603.43367.89
  • Haberfehlner, (2014), Nanoscale, 6, pp. 14563, 10.1039/C4NR04553J
  • Hamaguchi, (2016), Appl Catal B, 193, pp. 234, 10.1016/j.apcatb.2016.04.023
  • Hernández, (2010), Catal Today, 157, pp. 160, 10.1016/j.cattod.2010.03.010
  • Horita, (1986), Journal of Microscopy, 143, pp. 215, 10.1111/j.1365-2818.1986.tb02779.x
  • Hu, (2018), Chem Mater, 30, pp. 6124, 10.1021/acs.chemmater.8b02575
  • Huang, (2016), Chem Commun, 52, pp. 4088, 10.1039/C6CC00025H
  • Huang, (2015), Appl Catal A, 507, pp. 65
  • Jia, (2004), Science, 303, pp. 2001, 10.1126/science.1093617
  • Khawam, (2006), J Phys Chem B, 110, pp. 17315, 10.1021/jp062746a
  • Kim, (2017), Ultramicroscopy, 181, pp. 1, 10.1016/j.ultramic.2017.04.020
  • Kumar, (2021), Nat Mater, 20, pp. 62, 10.1038/s41563-020-0794-5
  • Kunkalekar, (2010), Catal Commun, 12, pp. 193, 10.1016/j.catcom.2010.09.013
  • Li, (2015), Catal Today, 256, pp. 178, 10.1016/j.cattod.2015.02.003
  • Lu, (2016), Nano Lett, 16, pp. 2728, 10.1021/acs.nanolett.6b00401
  • Ma, (2017), Appl Catal B, 201, pp. 503, 10.1016/j.apcatb.2016.08.050
  • Mao, (2015), Appl Catal B, 174, pp. 496, 10.1016/j.apcatb.2015.03.044
  • Marvel, (2019), Ultramicroscopy, 202, pp. 163, 10.1016/j.ultramic.2019.04.008
  • Meng, (2014), J Am Chem Soc, 136, pp. 11452, 10.1021/ja505186m
  • Narkilar, (2001), International Book Series: Studies of High Temperature Superconductors
  • Pahalagedara, (2017), Appl Catal B, 204, pp. 411, 10.1016/j.apcatb.2016.11.043
  • Powell, (1976), Rev Mod Phys, 48, pp. 33, 10.1103/RevModPhys.48.33
  • Poyraz, (2017), J Mater Chem A, 5, pp. 16914, 10.1039/C7TA03476H
  • Rueda-Fonseca, (2016), Nano Lett, 16, pp. 1637, 10.1021/acs.nanolett.5b04489
  • Schreiber, (1981), Ultramicroscopy, 6, pp. 323, 10.1016/S0304-3991(81)80234-3
  • Sorzano, (2009), BMC Bioinf, 10, pp. 124, 10.1186/1471-2105-10-124
  • Sun, (2011), Appl Catal A, 393, pp. 323, 10.1016/j.apcata.2010.12.012
  • Tompsett, (2014), J Mater Chem A, 2, pp. 15509, 10.1039/C4TA00952E
  • Trasobares, (2003), J Phys Chem A, 107, pp. 228, 10.1021/jp026340j
  • Van Aarle, (2015), Ultramicroscopy, 157, pp. 35, 10.1016/j.ultramic.2015.05.002
  • Varela, (2009), Phys Rev B, 79, pp. 85117, 10.1103/PhysRevB.79.085117
  • Wang, (2016), J Chem Phys, 144, 10.1063/1.4945608
  • Wang, (2017), Nano Today, 13, pp. 23, 10.1016/j.nantod.2017.02.009
  • Watanabe, (2009), Microsc Anal, 23, pp. 5
  • Watanabe, (2006), J Microsc, 221, pp. 89, 10.1111/j.1365-2818.2006.01549.x
  • Wu, (2015), ACS Nano, 9, pp. 8430, 10.1021/acsnano.5b03274
  • Yuan, (2016), Nat Commun, 7, pp. 13374, 10.1038/ncomms13374
  • Zanaga, (2016), Ultramicroscopy, 164, pp. 11, 10.1016/j.ultramic.2016.03.002
  • Zhang, (2016), Appl Catal B, 181, pp. 561, 10.1016/j.apcatb.2015.08.029