Barcoding coffee grounds - Exploring pteropod gastropod biodiversity with dregs in collection jars

  1. Christina Franziska Laibl 1
  2. Juan Lucas Cervera Currado 2
  3. Jérôme Morinière
  4. Michael Schrödl 3
  1. 1 Universität München
  2. 2 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

  3. 3 University Munich
Journal:
Scientia Marina

ISSN: 0214-8358

Year of publication: 2023

Volume: 87

Issue: 2

Pages: 61

Type: Article

DOI: 10.3989/SCIMAR.05275.061 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Scientia Marina

Abstract

Despite their cosmopolitan occurrence and massive plankton sampling during expeditions, the genetic diversity within Pteropoda Cuvier, 1804 is still largely unexplored. In this study we present a next-generation environmental barcoding approach to zooplankton bulk samples, which were collected during the circumglobal 2010 Malaspina expedition to evaluate pteropod diversity. We introduce a technique that avoids destructive procedures and leaves material intact for further morphological investigations. We extracted DNA out of the dregs (organic material such as mucus or body parts) of 27 sample containers for molecular barcoding (average 100-260 bp of COI). We were able to identify 7128 operational taxonomic units corresponding to the species composition contained in the examined samples. Among them were three species of thecosome pteropods, Creseis acicula, Creseis virgula and Cavolinia inflexa, which are discussed with respect to their taxonomy and their geographic distribution. Unidentified gymnosomes were also present in our samples from warmer regions in oceanic waters of the southern Indian Ocean. To facilitate identification of species, it is beneficial to create a better database of pteropod COI barcodes. Furthermore, gathering environmental barcoding data on a broad global scale will help to better understand species abundance and distribution of pteropods in the world’s oceans, and potentially those of other planktonic organisms.

Funding information

Bibliographic References

  • Adhikari D., Webster D. R., Yen J. 2016. Portable tomographic PIV measurements of swimming shelled Antarctic pteropods. Exp. Fluids. 57: 1-17.
  • Antezana T. 2009. Species-specific patterns of diel migration into the Oxygen Minimum Zone by euphausiids in the Humboldt Current Ecosystem. Prog. Oceanogr. 83: 228-236.
  • Bucklin A., Steinke D., Blanco-Bercial L. 2011. DNA barcoding of marine metazoa. Annu. Rev. Mar. Science 3: 471-508.
  • Bucklin A., Peijnenburg K.T., Kosobokova K.N., et al. 2021. Toward a global reference database of COI barcodes for marine zooplankton. Mar. Biol. 168: 1-26.
  • Burridge A.K., Hörnlein C., Janssen A.W., et al. 2017a. Time-calibrated molecular phylogeny of pteropods. PloS ONE 12: e0177325.
  • Burridge A.K., Goetze E., Wall-Palmer D., et al. 2017b. Diversity and abundance of pteropods and heteropods along a latitudinal gradient across the Atlantic Ocean. Prog. Oceanogr. 158: 213-223.
  • Bouchet P., Rocroi J.-P., Hausdorf B., et al. 2017. Revised classification, nomenclator and typification of gastropod and monoplacophoran families. Malacologia 61: 1-526.
  • Chimeno C., Hübner J., Seifert L., et al. 2022. Depicting environmental gradients from Malaise trap samples: Is ethanol‐based DNA metabarcoding enough? Insect Conservation and Diversity.
  • Corse E., Rampal J., Cuoc C., et al. 2013. Phylogenetic analysis of Thecosomata Blainville, 1824 (Holoplanktonic Opisthobranchia) using morphological and molecular data. PLoS ONE 8: e59439.
  • Di Capua I., D’Angiolo R., Piredda R., et al. 2022. From Phenotypes to Genotypes and Back: Toward an Integrated Evaluation of Biodiversity in Calanoid Copepods. Front. Mar. Sci. 75.
  • Fonseca V. G., Nichols B., Lallias D., et al. 2012. Sample richness and genetic diversity as drivers of chimera formation in nSSU metagenetic analyses. Nucleic Acids Res. 40: e66.
  • Frontier S.1965. Le problème des Creseis. Océanographie (Nosy-Bé), Cah. ORSTOM. Sér. Sci. Hum. 3:11-17.
  • Gasca R., Janssen A. W. 2014. Taxonomic review, molecular data and key to the species of Creseidae from the Atlantic Ocean. J. Molluscan Stud. 80: 35-42.
  • Harris D. J., Rosado D., Xavier R. 2016. DNA barcoding reveals extensive mislabeling in seafood sold in Portuguese supermarkets. J. Aquat. Food Prod. Technol. 25: 1375-1380.
  • Hausmann A., Godfray H. C.J., Huemer P., et al. 2013. Genetic patterns in European geometrid moths revealed by the Barcode Index Number (BIN) system. PloS ONE 8: e84518.
  • Hausmann A., Segerer A.H., Greifenstein T., et al. 2020. Toward a standardized quantitative and qualitative insect monitoring scheme. Ecol. Evol. 10: 4009-4020.
  • Hays G. C. 2003. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Migrations and dispersal of marine organisms. Hydrobiologia 503: 163-170.
  • Hajibabaei M., Singer G.A., Hebert P.D., et al. 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet. 23: 167-172.
  • Janik P., Ronikier M., Ronikier A. 2020. New protocol for successful isolation and amplification of DNA from exiguous fractions of specimens: a tool to overcome the basic obstacle in molecular analyses of myxomycetes. PeerJ 8: e8406.
  • Janssen A. 2006. Notes on the systematics, morphology and biostratigraphy of fossil holoplanktonic Mollusca. On the status of some pteropods (Gastropoda, Euthecosomata) from the Miocene of New Zealand, referred to as species of Vaginella. Basteria 70: 71-83.
  • Janssen A.W. 2007. Holoplanktonic Mollusca (Gastropoda: Pterotracheoidea, Janthinoidea, Thecosomata and Gymnosomata) from the Pliocene of Pangasinan (Luzon, Philippines). Scr. Geol. 135: 29-177.
  • Janssen A. 2012. Early Pliocene heteropods and pteropods (Mollusca, Gastropoda) from Le Puget-sur-Argens (Var), France. Cainozoic Res. 9: 145-166.
  • Janssen A. W. 2018. Notes on the systematics, morphology and biostratigraphy of holoplanktic Mollusca, 25 (1). Once more: the correct name for the type species of the genus Creseis Rang, 1828 (Pteropoda, Euthecosomata, Creseidae). Basteria 82: 110-112.
  • Janssen A.W., Bush S.L., Bednaršek N. 2019. The shelled pteropods of the northeast Pacific Ocean (Mollusca: Heterobranchia, Pteropoda). Zoosymposia 13: 305-346.
  • Karakas F., Wingate J., Blanco-Bercial L. et al. 2020. Swimming and Sinking Behavior of Warm Water Pelagic Snails. Front. Mar. Sci. 7:749.
  • Klussmann‐Kolb A., Dinapoli A. 2006. Systematic position of the pelagic Thecosomata and Gymnosomata within Opisthobranchia (Mollusca, Gastropoda)-revival of the Pteropoda. J. Zool. Syst. Evol. Res. 44: 118-129.
  • Kohnert P.C., Cerwenka A.F., Brandt A., Schrödl M. 2020. Pteropods from the Kuril-Kamchatka Trench and the sea of Okhotsk (Euopisthobranchia; Gastropoda). Prog. Oceanogr. 181:102259.
  • Lalli C.M., Gilmer R.W. 1989. Pelagic snails: the biology of holoplanktonic gastropod mollusks. Palo Alto, Stanford Univ. Press.
  • Leray M., Yang J.Y., Meyer C.P., et al. 2013. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10: 1-14.
  • Makiola A., Compson Z.G., Baird D.J., et al. 2020. Key questions for next-generation biomonitoring. Front. Environ. Sci. 7: 197.
  • Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17:10-12.
  • Manno C., Morata N., Primicerio R. 2012. Limacina retroversa’s response to combined effects of ocean acidification and sea water freshening. Estuar. Coast. Shelf Sci. 113: 163-171.
  • Morinière J., Cancian de Araujo B., Lam A. W., et al. 2016. Species identification in malaise trap samples by DNA barcoding based on NGS technologies and a scoring matrix. PloS ONE 11: e0155497.
  • Mioduchowska M., Czyż M.J., Gołdyn B., et al. 2018. Instances of erroneous DNA barcoding of metazoan invertebrates: Are universal cox1 gene primers too “universal”? PLoS ONE. 13: e0199609.
  • Ondov B. D., Bergman N. H., Phillippy A. M. 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12: 1-10.
  • Porter T. M., Hajibabaei M. 2018. Over 2.5 million COI sequences in GenBank and growing. PloS ONE 13: e0200177.
  • Puillandre N., Lambert A., Brouillet S., et al. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. Resour. 21: 1864-1877.
  • Rampal J. 1985. Systématique du genre Creseis (Mollusques, Thécosomes), Rapport de la Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée. Bull. Comm. Int. Explor. Sci. Mer Mediterr. 29: 259-263.
  • Rampal J. 2002. Biodiversité et biogéographie chez les Cavoliniidae (Mollusca, Gastropoda, Opisthobranchia, Euthecosomata). Régions faunistiques marines, Zoosystema 24 :209-258.
  • Ratnasingham S., Hebert P. D. 2013. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PloS ONE 8: e66213.
  • Rognes T., Flouri T., Nichols B., et al. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4: e2584.
  • Stromek L., Lasota R., Szymelfenig M., Wolowicz M. 2015. Genetic evidence for the existence of two species of the “bipolar” pelagic mollusk Clione limacinae. Am. Malacol. Bull. 33: 118-120.
  • Wang S., Yan Z., Hänfling B., et al. 2021. Methodology of fish eDNA and its applications in ecology and environment. Sci. Total Environ. 755: 142622.
  • Weldrick C. K., Trebilco R., Davies D. M., Swadling K. M. 2019. Trophodynamics of Southern Ocean pteropods on the southern Kerguelen Plateau. Ecol. Evol. 9: 8119-8132.
  • Yamazaki T., Kuwahara T. 2017. A new species of Clione distinguished from sympatric Clione limacina (Gastropoda: Gymnosomata) in the southern Okhotsk Sea, Japan, with remarks on the taxonomy of the genus. J. Molluscan Stud. 83: 19-26.