Effect of substrate roughness on the nucleation and growth behaviour of microwave plasma enhanced CVD diamond films – a case study

  1. Mallik, Awadesh Kumar 234
  2. Rouzbahani, Rozita 23
  3. Lloret, Fernando 1
  4. Mary Joy, Rani 23
  5. Haenen, Ken 23
  1. 1 Dpt. Física Aplicada, Universidad de Cádiz, Puerto Real, Spain
  2. 2 Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium
  3. 3 IMOMEC, IMEC vzw, Diepenbeek, Belgium
  4. 4 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore
Revista:
Functional Diamond

ISSN: 2694-1112 2694-1120

Año de publicación: 2023

Volumen: 3

Número: 1

Tipo: Artículo

DOI: 10.1080/26941112.2023.2295346 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Functional Diamond

Resumen

The influence of substrate surface roughness on the nucleation and growth of diamond films by chemical vapour deposition (CVD) is investigated. Silicon substrates were grinded with six different grit sizes of abrasive papers with a rotating wheel. Si was also etched by Ar+ ions to produce average surface roughness Ra = 11.29 nm on the mirror polished side (Ra = 1.17 nm). A comparison of the results of the effect of substrate roughness, on the growth behaviour of nanocrystalline diamond (NCD) films, by using both the resonant cavity and the linear antenna CVD systems, are presented here. Scanning electron microscopy (SEM) images and Raman spectroscopy reveal that under both the linear antenna and the resonant cavity microwave plasma CVD conditions, grown films are NCD. The diamond nanocrystals sizes vary from 80 to 180 nm, grown by both the reactors after few hours of deposition, irrespective of the substrate roughness, whereas their quality (defined by the relative percentage ratios of the Raman sp3 peak intensity to the non-sp3 peak intensity) varies from 33% to 45%, depending on the substrate surface roughness. Such nanocrystals grew into plate-like flat 1–6 μm size diamond grains after prolonged hours (64–69 h) of CVD growth. It is found specifically that the roughness created by the argon plasma treatment of the silicon substrate surfaces effectively enhances the nucleation and growth behaviour of the diamond films.

Información de financiación

Financiadores

  • Methusalem NANO network
  • Research Foundation – Flanders
    • G0D4920N
  • Research Foundation – Flanders
    • 12X2919N

Referencias bibliográficas

  • 10.1016/0022-0248(80)90104-9
  • 10.1021/jp5113729
  • 10.1063/1.3103254
  • 10.1016/j.diamond.2005.07.009
  • Ying Z, et al. Effect of substrate micro-morphology on heterogeneous nucleation. China Found. 2012;9:234–238.
  • 10.1016/j.apsusc.2011.11.120
  • 10.1021/cg201084j
  • 10.1021/jp0741612
  • 10.1016/S1005-0302(12)60025-5
  • 10.1016/j.ces.2007.10.016
  • 10.1016/j.ijheatmasstransfer.2004.02.019
  • Ohring M. Materials science of thin films. 2nd ed. Cambridge (MA): Academic Press; 2002.
  • 10.1021/acs.jpcc.5b07709
  • 10.1021/ja9085512
  • 10.1039/D1RA00397F
  • 10.1016/0925-9635(92)90029-N
  • 10.1016/0169-4332(93)90201-L
  • 10.1016/j.diamond.2009.04.007
  • 10.1016/S0927-796X(99)00003-0
  • 10.1557/opl.2011.992
  • 10.1002/cvde.200806745
  • 10.1007/s100510050943
  • 10.1016/j.diamond.2009.10.008
  • 10.1016/j.cplett.2007.07.091
  • Haenen K Pobedinskas P Ramaneti R. Growing diamond layers. Patent no. EP3745446A1. 2020 Feb 12.
  • 10.1016/0925-9635(94)05301-4
  • 10.1016/j.diamond.2017.12.018
  • 10.1103/PhysRevB.45.11067
  • 10.1103/PhysRevB.55.15895
  • 10.1063/1.4807591
  • 10.1016/j.surfcoat.2018.09.067
  • 10.4236/ojapps.2015.512071
  • 10.14355/acse.2014.03.005
  • 10.1007/s12034-010-0039-3
  • 10.1021/acsomega.7b01069
  • 10.1038/s41598-019-39707-z
  • 10.1016/j.ceramint.2019.01.046
  • 10.1016/j.msec.2015.08.029
  • 10.1149/2.0121812jes
  • 10.1016/j.surfcoat.2015.01.012
  • 10.1016/j.diamond.2008.03.035
  • 10.1179/174328007X160245
  • 10.1016/j.apsusc.2020.148016
  • Drijkoningen S. Low temperature deposition and characterisation of high quality nanocrystalline diamond films for the fabrication of highly sensitive pressure sensing membranes. Belgium: Hasselt University; 2017.
  • 10.1006/jcis.2000.7167
  • 10.1021/acs.cgd.7b00623
  • 10.1007/s40145-014-0093-1
  • 10.1007/s12034-015-0860-9