First assessment of seagrass carbon accumulation rates in Sweden: A field study from a fjord system at the Skagerrak coast

  1. Dahl, Martin
  2. Asplund, Maria E.
  3. Bergman, Sanne
  4. Björk, Mats
  5. Braun, Sara
  6. Löfgren, Elin
  7. Martí, Elisa
  8. Masque, Pere
  9. Svensson, Robin
  10. Gullström, Martin
Revista:
PLOS Climate

ISSN: 2767-3200

Año de publicación: 2023

Volumen: 2

Número: 1

Páginas: e0000099

Tipo: Artículo

DOI: 10.1371/JOURNAL.PCLM.0000099 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: PLOS Climate

Resumen

Seagrass meadows are globally important blue carbon sinks. In northern cold-temperate regions, eelgrass (Zostera marina) is the dominant seagrass species, and although their sedimentary carbon stocks have been quantified across regions, information regarding the CO2 withdrawal capacity as carbon sinks remains scarce. Here we assessed the carbon (Corg) accumulation rates (CARs) and stocks as well as the organic matter sources in five seagrass meadows in the Gullmar Fjord area on the Swedish Skagerrak coast. We found that the mean (±SD) CAR was 14 ± 3 g Corg m-2 yr-1 over the last ~120–140 years (corresponding to a yearly uptake of 52.4 ± 12.6 g CO2 m-2). The carbon sink capacity is in line with other Z. marina areas but relatively low compared to other seagrass species and regions globally. About half of the sedimentary carbon accumulation (7.1 ± 3.3 g Corg m-2 yr-1) originated from macroalgae biomass, which highlights the importance of non-seagrass derived material for the carbon sink function of seagrass meadows in the area. The Corg stocks were similar among sites when comparing at a standardized depth of 50 cm (4.6–5.9 kg Corg m-2), but showed large variation when assessed for the total extent of the cores (ranging from 0.7 to 20.6 kg Corg m-2 for sediment depths of 11 to at least 149 cm). The low sediment accretion rates (1.18–1.86 mm yr-1) and the relatively thick sediment deposits (with a maximum of >150 cm of sediment depth) suggests that the carbon stocks have likely been accumulated for an extended period of time, and that the documented loss of seagrass meadows in the Swedish Skagerrak region and associated erosion of the sediment could potentially have offset centuries of carbon sequestration.

Información de financiación

Financiadores

Referencias bibliográficas

  • V Masson-Delmotte, (2021), Contrib Work Gr I to sixth Assess Rep Intergov panel Clim Chang, 2
  • JW Fourqurean, (2012), Nat Geosci, 5, pp. 505, 10.1038/ngeo1477
  • O Serrano, (2019), Nat Commun, 10, pp. 1, 10.1038/s41467-019-12176-8
  • H Kennedy, (2010), Global Biogeochem Cycles, 24, pp. GB4026, 10.1029/2010GB003848
  • D Krause-Jensen, (2018), Biol Lett, 14, pp. 20180236, 10.1098/rsbl.2018.0236
  • MA Hemminga, (2000), Seagrass ecology., 10.1017/CBO9780511525551
  • CM Duarte, (2013), Nat Publ Gr, 3, pp. 961
  • MA Mateo, (1997), Estuar Coast Shelf Sci., pp. 44
  • M Rozaimi, (2016), Estuar Coast Shelf Sci, 171, pp. 58, 10.1016/j.ecss.2016.01.001
  • O Serrano, (2016), Front Mar Sci, 3, pp. 42, 10.3389/fmars.2016.00042
  • T Cuellar-Martinez, (2020), Glob Planet Change, 192, pp. 103215, 10.1016/j.gloplacha.2020.103215
  • M Martins, (2021), Ecosystems, pp. 1
  • FT Short, (2007), J Exp Mar Bio Ecol, 350, pp. 3, 10.1016/j.jembe.2007.06.012
  • ME Röhr, (2018), Global Biogeochem Cycles, pp. 1457, 10.1029/2018GB005941
  • S Baden, (2003), Ambio, 32, pp. 374, 10.1579/0044-7447-32.5.374
  • A Nyqvist, (2009), Ambio, 38, pp. 85, 10.1579/0044-7447-38.2.85
  • P Moksnes, (2008), Oikos, 117, pp. 763, 10.1111/j.0030-1299.2008.16521.x
  • T Jephson, (2008), Mar Ecol Prog Ser, 369, pp. 63, 10.3354/meps07646
  • P-O Moksnes, (2021), Ecosphere
  • ME Röhr, (2016), Biogeosciences, 13, pp. 6139, 10.5194/bg-13-6139-2016
  • T Kindeberg, (2019), Biol Lett, 15, pp. 20180831, 10.1098/rsbl.2018.0831
  • E Jankowska, (2016), J Geophys Res Biogeosciences, 121, pp. 2918, 10.1002/2016JG003424
  • N Marbà, (2018), Sci Rep., 8, pp. 1, 10.1038/s41598-018-32249-w
  • C Prentice, (2020), Global Biogeochem Cycles, 34, pp. e2019GB006345, 10.1029/2019GB006345
  • MA Vanderklift, (2022), Front Mar Sci, 9, pp. 1, 10.3389/fmars.2022.872064
  • O Lindahl, (1988), Mar Ecol Prog Ser Oldend, 43, pp. 161, 10.3354/meps043161
  • K. Johannesson, (1989), Oikos, pp. 77, 10.2307/3565899
  • M Dahl, (2018), Limnol Oceanogr, 63, pp. 2793, 10.1002/lno.11009
  • M Dahl, (2020), J Geophys Res—Biogeosciences, 125, pp. 1, 10.1029/2019JG005430
  • J a Sanchez-Cabeza, (1998), J Radioanal Nucl Chem, 227, pp. 19, 10.1007/BF02386425
  • A Arias-Ortiz, (2018), Biogeosciences, 15, pp. 6791, 10.5194/bg-15-6791-2018
  • S Krishnaswamy, (1971), Earth Planet Sci Lett, 11, pp. 407, 10.1016/0012-821X(71)90202-0
  • PG Appleby, (1978), Catena, 5, pp. 1, 10.1016/S0341-8162(78)80002-2
  • M Dahl, (2016), PLoS One, 11, pp. e0167493, 10.1371/journal.pone.0167493
  • AC Parnell, (2013), Environmetrics, 24, pp. 387, 10.1002/env.2221
  • A Parnell, (2016), R Packag version 03 R
  • JW Fourqurean, (2003), Chem Ecol, 19, pp. 373, 10.1080/02757540310001609370
  • GS Kolb, (2010), Ecosystems, 13, pp. 353, 10.1007/s10021-010-9323-8
  • K Mellbrand, (2010), Can J Zool, 88, pp. 1077, 10.1139/Z10-074
  • H Frigstad, (2021), Nordic Council of Ministers
  • SC Maberly, (1992), Oecologia, 91, pp. 481, 10.1007/BF00650320
  • AB Novak, (2020), Estuaries and Coasts
  • VR Postlethwaite, (2018), PLoS One, 13, pp. 1, 10.1371/journal.pone.0198348
  • T Miyajima, (2015), Global Biogeochem Cycles, 29, pp. 397, 10.1002/2014GB004979
  • C Akselsson, (2005), Glob Ecol Biogeogr, 14, pp. 77, 10.1111/j.1466-822X.2004.00133.x
  • ABK Sannel, (2018), Boreas, 47, pp. 454, 10.1111/bor.12276
  • M Dahl, (2020), Sci Rep., pp. 1
  • I Mazarrasa, (2018), Mar Pollut Bull, 134, pp. 106, 10.1016/j.marpolbul.2018.01.059
  • J Samper-Villarreal, (2016), Limnol Oceanogr, 61, pp. 938, 10.1002/lno.10262
  • CI Prentice, (2019), Limnol Oceanogr, pp. 1
  • R Santos, (2019), Sci Rep, 9, pp. 610, 10.1038/s41598-018-37031-6
  • PLA Erftemeijer, (2006), Mar Pollut Bull, 52, pp. 1553, 10.1016/j.marpolbul.2006.09.006
  • MA Young, (2018), Biol Lett, pp. 14
  • MPJ Oreska, (2017), PLoS One, 12, pp. e0176630, 10.1371/journal.pone.0176630
  • O Serrano, (2014), Global Biogeochem Cycles, 28, pp. 950, 10.1002/2014GB004872
  • JC de Smit, (2022), Limnol Oceanogr, 67, pp. S121, 10.1002/lno.11865
  • P Tett, (2003), Cont Shelf Res, 23, pp. 1635, 10.1016/j.csr.2003.06.013
  • D Krause-jensen, (2022), Front Mar Sci, 9, pp. 1, 10.3389/fmars.2022.847544
  • O Serrano, (2016), Biogeosciences, 13, pp. 4915, 10.5194/bg-13-4915-2016
  • R Riera, (2020), Mar Pollut Bull, 158, pp. 111434, 10.1016/j.marpolbul.2020.111434
  • BK Eriksson, (2002), J Phycol, 38, pp. 284, 10.1046/j.1529-8817.2002.00170.x
  • KM Norderhaug, (2015), Mar Ecol Prog Ser, 530, pp. 29, 10.3354/meps11306
  • S Liu, (2020)
  • P-O Moksnes, (2016), Swedish Agency for Marine and Water Management Report
  • N Marbà, (2015), J Ecol, 103, pp. 296, 10.1111/1365-2745.12370
  • MN Githaiga, (2019), Front Ecol Evol, 7, pp. 1, 10.3389/fevo.2019.00062
  • PI Macreadie, (2015), Proc R Soc B, 282, pp. 20151537, 10.1098/rspb.2015.1537
  • CM Duarte, (2010), Global Biogeochem Cycles, pp. 24
  • CM Duarte, (2017), Front Mar Sci, 4, pp. 1, 10.3389/fmars.2017.00013
  • C Fu, (2021), Glob Chang Biol, 27, pp. 202, 10.1111/gcb.15348
  • ME Asplund, (2022), Front Mar Sci, 8, pp. 1, 10.3389/fmars.2021.811533
  • K-S Lee, (2005), Mar Biol, 147, pp. 1091, 10.1007/s00227-005-0011-8
  • K Sand-Jensen, (1975), Ophelia, 14, pp. 185, 10.1080/00785236.1975.10422501
  • SP Baden, (1984), Ophelia, 23, pp. 65, 10.1080/00785236.1984.10426605
  • Deyanova D. Seagrass productivity: from plant to system. PhD-thesis. Department of Ecology, Environment and Plant Sciences, Stockholm University; 2018.
  • Q Zhu, (2022), Limnol Oceanogr
  • A Adhitya, (2014), Mar Ecol Prog Ser, 516, pp. 49, 10.3354/meps10873