On p-Frobenius of Affine Semigroups

  1. García Barroso, Evelia R. 1
  2. García-García, Juan I. 2
  3. Sánchez, Luis J. Santana 1
  4. Vigneron-Tenorio, Alberto 2
  1. 1 Universidad de La Laguna
    info

    Universidad de La Laguna

    San Cristobal de La Laguna, España

    ROR https://ror.org/01r9z8p25

  2. 2 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

Journal:
Mediterranean Journal of Mathematics

ISSN: 1660-5446 1660-5454

Year of publication: 2024

Volume: 21

Issue: 3

Type: Article

DOI: 10.1007/S00009-024-02625-0 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Mediterranean Journal of Mathematics

Abstract

This paper studies the p-Frobenius vector of affine semigroups . Defined with respect to a graded monomial order, the p-Frobenius vector represents the maximum element with at most p factorizations within S. We develop efficient algorithms for computing these vectors and analyze their behavior under the gluing operations with .

Funding information

Funders

  • Universidad de Cadiz

Bibliographic References

  • Aliev, I., De Loera, J.A., Louveaux, Q.: Parametric polyhedra with at least k lattice points: their semigroup structure and the k-Frobenius problem Recent trends in combinatorics. IMA Vol. Math. Appl. 159, 753–778 (2016). (Springer)
  • Assi, A., García-Sánchez, P.A., Ojeda, I.: Frobenius vectors, Hilbert series and gluings of affine semigroups. J. Commut. Algebra 7(3), 317–335 (2015)
  • Beck, M., Robins, S.A.: formula related to the Frobenius problem in two dimensions. Number theory (New York,: 17–23, p. 2004). Springer, New York (2003)
  • Brown, A., Dannenberg, E., Fox, J., Hanna, J., Keck, K., Moore, A., Robbins, Z., Samples, B., Stankewicz, J.: On a generalization of the Frobenius number. J. Integer. Seq. 13(1), 6 (2010). (Article 10.1.4)
  • Cox, D.A., Little, J., O’Shea, D.: Undergraduate Texts in Mathematics. Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra, Springer, Cham (2015)
  • Delorme, C.: Sous-monoïdes d’intersection complète de N. Ann. Sci. École Norm. Sup. (4) 9(1), 145–154 (1976)
  • Díaz-Ramírez, J.D., García-García, J.I., Marín-Aragón, D., Vigneron-Tenorio, A.: Characterizing affine $${\cal{C} }$$-semigroups. Ricerche di Matematica 71, 283–296 (2022)
  • Eliahou, S.: Courbes monomiales et algébre de Rees symbolique. PhD thesis (in French). Université of Genève, (1983)
  • Fischer, K.G., Morris, W., Spahiro, J.: Affine semigroup rings that are complete intersections. Proc. Am. Math. Soc. 125(11), 3137–3145 (1997)
  • Fröberg, R., Gottlieb, C., Häggkvist, R.: On numerical semigroups. Semigroup Forum 35(1), 63–83 (1987)
  • García-García, J.I., Marín-Aragón, D., Vigneron-Tenorio, A.: An extension of Wilf’s conjecture to affine semigroups. Semigroup Forum 96(2), 396–408 (2018)
  • García-García, J.I., Moreno-Frías, M.A., Vigneron-Tenorio, A.: Combinatorial properties and characterization of glued semigroups. Abstr Appl Anal 2014, 1–8 (2014)
  • Gimenez, P., Srinivasan, H.: Gluing semigroups: when and how. Semigroup Forum 101, 603–618 (2020)
  • Herzog, J.: Generators and relations of abelian semigroups and semigroup rings. Manuscr. Math. 3, 175–193 (1970)
  • Komatsu, T., Ying, H.: The $$p$$-Frobenius and $$p$$-Sylvester numbers for Fibonacci and Lucas triplets. Math. Biosci. Eng. 20(2), 3455–3481 (2023)
  • Ojeda, I., Vigneron-Tenorio, A.: Indispensable binomials in semigroup ideals. Proc. Am. Math. Soc. 138, 4205–4216 (2010)
  • Ojeda, I., Vigneron-Tenorio, A.: Simplicial complexes and minimal free resolution of monomial algebras. J. Pure Appl. Algebra 214, 850–861 (2010)
  • Ramírez Alfonsín, J.L.: The Diophantine Frobenius Problem. Oxford University Press, Oxford (2005)
  • Rosales, J. C.: Semigrupos numéricos. Doctoral thesis, Universidad de Granada (1991)
  • Rosales, J.C.: On presentations of subsemigroups of $$\mathbb{N} ^n$$. Semigroup Forum 55(2), 152–159 (1997)
  • Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups. Springer, Berlin/Heidelberg (2009)
  • Singhal, P., and Lin, Y.: Frobenius allowable gaps of generalized numerical semigroups. Electron J Comb 29(4), (2022)
  • Sylvester, J.J.: Mathematical questions with their solutions. Educ. Times 41, 21 (1884)
  • Tripathi, A.: Formulae for the Frobenius number in three variables. J. Number Theory 170, 368–389 (2017)