Cannabinoides y dolor (parte I)

  1. Esperanza Regueras 1
  2. Ignacio Velázquez 2
  3. Luis Miguel Torres 3
  1. 1 Universidad de Navarra
    info

    Universidad de Navarra

    Pamplona, España

    ROR https://ror.org/02rxc7m23

  2. 2 Hospital de Guadix
  3. 3 Hospital Puerta Mar (Cádiz)
Revista:
MPJ Multidisciplinary Pain Journal

ISSN: 2697-2263

Año de publicación: 2023

Número: 1

Tipo: Artículo

DOI: 10.20986/MPJ.2023.1052/2023 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: MPJ Multidisciplinary Pain Journal

Resumen

Los cannabinoides son un grupo de sustancias que se clasifican en tres tipos: endocannabinoides (AEA o 2-AG), que son las sustancias producidas endógenamente; fitocannabinoides, que son sustancias exógenas procedes del cannabis o la planta; y los cannabinoides sintéticos, que son los fabricados artificialmente. Todos ellos actúan de maneras distintas sobre el sistema endocannabinoide endógeno. Dado el interés reciente que estas sustancias han despertado como potenciales tratamientos del dolor, es imperativo realizar una profunda revisión y análisis de lo que se conoce hasta el momento sobre la farmacología, la farmacocinética, el mecanismo de acción y la toxicidad de los cannabinoides (Parte I). Asimismo revisamos en este trabajo la evidencia científica del uso de los cannabinoides en dolor y los estudios clínicos que están en marcha en esta indicación (Parte II).

Referencias bibliográficas

  • Bilbao A, Spanagel R. Medical cannabinoids: a pharmacology-based systematic review and meta-analysis for all relevant medical indications. BMC Med. 2022;20(1):259. DOI: 10.1186/s12916-022-02459-1.
  • Alves P, Amaral C, Teixeira N, Correia-da-Silva G. Cannabis sativa: Much more beyond Δ9-tetrahydrocannabinol. Pharmacol Res. 2020;157:104822. DOI: 10.1016/j.phrs.2020.104822.
  • Pagano C, Navarra G, Coppola L, Avilia G, Bifulco M, Laezza C. Cannabinoids: Therapeutic Use in Clinical Practice. Int J Mol Sci. 2022;23(6):3344. DOI: 10.3390/ijms23063344.
  • Nowell WB, Gavigan K, L Silverman S. Cannabis for Rheumatic Disease Pain: a Review of Current Literature. Curr Rheumatol Rep. 2022;24(5):119-31. DOI: 10.1007/s11926-022-01065-7.
  • Di Marzo V, Bifulco M, De Petrocellis L. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov. 2004;3(9):771-84. DOI: 10.1038/nrd1495.
  • Meyer JS, Quenzer LF. Phsycopharmacology, drugs, the brain and behavior. International second edition. Oxford University press; 2018.
  • Wilkerson JL, Bilbrey JA, Felix JS, Makriyannis A, McMahon LR. Untapped endocannabinoid pharmacological targets: Pipe dream or pipeline? Pharmacol Biochem Behav. 2021;206:173192.
  • Mackie K. Distribution of Cannabinoid Receptors in the Central and Peripheral Nervous System. In: Pertwee RG (ed). Cannabinoids. Handbook of Experimental Pharmacology. Springer: Berlin/Heidelberg, Germany; 2005. p. 299-325.
  • Araque A, Castillo PE, Manzoni OJ, Tonini R. Synaptic functions of endocannabinoid signaling in health and disease. Neuropharmacology. 2017;124:13-24. DOI: 10.1016/j.neuropharm.2017.06.017.
  • Marinelli S, Pacioni S, Bisogno T, Di Marzo V, Prince DA, Huguenard JR, et al. The endocannabinoid 2-arachidonoylglycerol is responsible for the slow self-inhibition in neocortical interneurons. J Neurosci. 2008;28(50):13532-41. DOI: 10.1523/JNEUROSCI.0847-08.2008.
  • Bénard G, Massa F, Puente N, Lourenço J, Bellocchio L, Soria-Gómez E, et al. Mitochondrial CB₁ receptors regulate neuronal energy metabolism. Nat Neurosci. 2012;15(4):558-64. DOI: 10.1038/nn.3053.
  • Han J, Kesner P, Metna-Laurent M, Duan T, Xu L, Georges F, et al. Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell. 2012;148(5):1039-50. DOI: 10.1016/j.cell.2012.01.037.
  • Metna-Laurent M, Marsicano G. Rising stars: modulation of brain functions by astroglial type-1 cannabinoid receptors. Glia. 2015;63(3):353-64. DOI: 10.1002/glia.22773.
  • Robin LM, Oliveira da Cruz JF, Langlais VC, Martin-Fernandez M, Metna-Laurent M, Busquets-Garcia A, et al. Astroglial CB1 Receptors Determine Synaptic D-Serine Availability to Enable Recognition Memory. Neuron. 2018;98(5):935-944.e5. DOI: 10.1016/j.neuron.2018.04.034.
  • Jimenez-Blasco D, Busquets-Garcia A, Hebert-Chatelain E, Serrat R, Vicente-Gutierrez C, Ioannidou C, et al. Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature. 2020;583(7817):603-8. DOI: 10.1038/s41586-020-2470-y.
  • Howlett A. International Union of Pharmacology. XXVII. Classification of Cannabinoid Receptors. Pharmacol Rev. 2002;54(2):161-202. DOI: 10.1124/pr.54.2.161.
  • Cheng X, Ji Z, Tsalkova T, Mei F. Epac and PKA: a tale of two intracellular cAMP receptors. Acta Biochim Biophys Sin (Shanghai). 2008;40(7):651-62. DOI: 10.1111/j.1745-7270.2008.00438.x.
  • Siehler S. Regulation of RhoGEF proteins by G12/13-coupled receptors. Br J Pharmacol. 2009;158(1):41-9. DOI: 10.1111/j.1476-5381.2009.00121.x.
  • Mizuno N, Itoh H. Functions and regulatory mechanisms of Gq-signaling pathways. Neurosignals. 2009;17(1):42-54. DOI: 10.1159/000186689.
  • Leo LM, Abood ME. CB1 Cannabinoid Receptor Signaling and Biased Signaling. Molecules. 2021;26(17):5413. DOI: 10.3390/molecules26175413.
  • Henderson LA, Kotsirilos V, Cairns EA, Ramachandran A, Peck CC, McGregor IS. Medicinal cannabis in the treatment of chronic pain. Aust J Gen Pract. 2021;50(10):724-32. DOI: 10.31128/AJGP-04-21-5939.
  • Alves P, Amaral C, Teixeira N, Correia-da-Silva G. Cannabis sativa: Much more beyond Δ9-tetrahydrocannabinol. Pharmacol Res. 2020;157:104822. DOI: 10.1016/j.phrs.2020.104822.
  • De Petrocellis L, Nabissi M, Santoni G, Ligresti A. Actions and Regulation of Ionotropic Cannabinoid Receptors. Adv Pharmacol. 2017;80:249-89.
  • Salazar H, Jara-Oseguera A, Rosenbaum T. El canal TRPV1 como diana para tratar el dolor [The TRPV1 channel as a target for the treatment of pain]. Rev Neurol. 2009;48(7):357-64.
  • Gómez-Cañas M, Rodríguez-Cueto C, Satta V, Hernández-Fisac I, Navarro E, Fernández-Ruiz J. Endocannabinoid-Binding Receptors as Drug Targets. Methods Mol Biol. 2023;2576:67-94.
  • Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem. 2004;279(7):5298-305. DOI: 10.1074/jbc.M306642200.
  • Sugiura T, Kishimoto S, Oka S, Gokoh M. Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res. 2006;45(5):405-46. DOI: 10.1016/j.plipres.2006.03.003.
  • Howlett AC, Abood ME. CB1 and CB2 Receptor Pharmacology. Adv Pharmacol. 2017;80:169-206.
  • Howlett AC, Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Porrino LJ. Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology. 2004;47(Suppl 1):345-58. DOI: 10.1016/j.neuropharm.2004.07.030.
  • Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. Endocannabinoid-mediated control of synaptic transmission. Physiol Rev. 2009;89(1):309-80. DOI: 10.1152/physrev.00019.2008.
  • Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci. 2003;4(11):873-84. DOI: 10.1038/nrn1247.
  • Sugiura T, Kishimoto S, Oka S, Gokoh M. Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res. 2006;45(5):405-46. DOI: 10.1016/j.plipres.2006.03.003.
  • Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Gessi S, Merighi S, Borea PA. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Med Res Rev. 2017;37(4):936-83. DOI: 10.1002/med.21427.
  • Muller C, Morales P, Reggio PH. Cannabinoid Ligands Targeting TRP Channels. Front Mol Neurosci. 2019;11:487. DOI: 10.3389/fnmol.2018.00487.
  • Starowicz K, Nigam S, Di Marzo V. Biochemistry and pharmacology of endovanilloids. Pharmacol Ther. 2007;114(1):13-33. DOI: 10.1016/j.pharmthera.2007.01.005.
  • Alger BE. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog Neurobiol. 2002;68(4):247-86. DOI: 10.1016/S0301-0082(02)00080-1.
  • Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron. 2012;76(1):70-81. DOI: 10.1016/j.neuron.2012.09.020.
  • Chevaleyre V, Castillo PE. Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron. 2003;38(3):461-72. DOI: 10.1016/S0896-6273(03)00235-6.
  • Freund TF, Hájos N. Excitement reduces inhibition via endocannabinoids. Neuron. 2003;38(3):362-5. DOI: 10.1016/S0896-6273(03)00262-9.
  • Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C, Reisenberg M, et al. Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci. 2010;30(6):2017-24. DOI: 10.1523/JNEUROSCI.5693-09.2010.
  • Gerdeman GL, Ronesi J, Lovinger DM. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci. 2002;5(5):446-51. DOI: 10.1038/nn832.
  • Hashimotodani Y, Ohno-Shosaku T, Kano M. Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus. J Neurosci. 2007;27(5):1211-9. DOI: 10.1523/JNEUROSCI.4159-06.2007.
  • Heifets BD, Castillo PE. Endocannabinoid signaling and long-term synaptic plasticity. Annu Rev Physiol. 2009;71:283-306. DOI: 10.1146/annurev.physiol.010908.163149.
  • Lovinger DM. Presynaptic modulation by endocannabinoids. Handb Exp Pharmacol. 2008;(184):435-77.
  • Tanimura A, Yamazaki M, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, et al. The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron. 2010;65(3):320-7. DOI: 10.1016/j.neuron.2010.01.021.
  • Simard M, Archambault AS, Lavoie JC, Dumais É, Di Marzo V, Flamand N. Biosynthesis and metabolism of endocannabinoids and their congeners from the monoacylglycerol and N-acyl-ethanolamine families. Biochem Pharmacol. 2022;205:115261. DOI: 10.1016/j.bcp.2022.11526.
  • Chen C. Homeostatic regulation of brain functions by endocannabinoid signaling. Neural Regen Res. 2015;10(5):691-2. DOI: 10.4103/1673-5374.156947.
  • Chen C. Endocannabinoid control of neuroinflammation in traumatic brain injury by monoacylglycerol lipase in astrocytes. Neural Regen Res. 2023;18(5):1023-4. DOI: 10.4103/1673-5374.355755.
  • Song Y, Zhang J, Chen C. Fine-tuning of synaptic upscaling at excitatory synapses by endocannabinoid signaling is mediated via the CB1 receptor. Sci Rep. 2015;5:16257. DOI: 10.1038/srep16257.
  • Zhang J, Chen C. Endocannabinoid 2-arachidonoylglycerol protects neurons by limiting COX-2 elevation. J Biol Chem. 2008;283(33):22601-11. DOI: 10.1074/jbc.M800524200.
  • Riquelme-Sandoval A, de Sá-Ferreira CO, Miyakoshi LM, Hedin-Pereira C. New Insights Into Peptide Cannabinoids: Structure, Biosynthesis and Signaling. Front Pharmacol. 2020;11:596572. DOI: 10.3389/fphar.2020.596572.
  • Alves P, Amaral C, Teixeira N, Correia-da-Silva G. Cannabis sativa: Much more beyond Δ9-tetrahydrocannabinol. Pharmacol Res. 2020;157:104822. DOI: 10.1016/j.phrs.2020.104822.
  • Woodhams SG, Chapman V, Finn DP, Hohmann AG, Neugebauer V. The cannabinoid system and pain. Neuropharmacology. 2017;124:105-20. DOI: 10.1016/j.neuropharm.2017.06.015.
  • Mackie K. Cannabinoid receptors: where they are and what they do. J Neuroendocrinol. 2008;20(s1):10-4. DOI: 10.1111/j.1365-2826.2008.01671.x.
  • Wilson RI, Nicoll RA. Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature. 2001;410(6828):588-92. DOI: 10.1038/35069076.
  • O’Sullivan SE. Endocannabinoids and the Cardiovascular System in Health and Disease. In: Handbook of Experimental Pharmacol- ogy; Springer: Berlin/Heidelberg, Germany; 2015. p. 393-422.
  • Koch M, Varela L, Kim JG, Kim JD, Hernández-Nuño F, Simonds SE, et al. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature. 2015;519(7541):45-50. DOI: 10.1038/nature14260.
  • Cota D, Marsicano G, Tschöp M, Grübler Y, Flachskamm C, Schubert M, et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest. 2003;112(3):423-31. DOI: 10.1172/JCI17725.
  • Osei-Hyiaman D, DePetrillo M, Pacher P, Liu J, Radaeva S, Bátkai S, Harvey-White J, Mackie K, Offertáler L, Wang L, Kunos G. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest. 2005;115(5):1298-305. DOI: 10.1172/JCI200523057.
  • Ma H, Zhang G, Mou C, Fu X, Chen Y. Peripheral CB1 Receptor Neutral Antagonist, AM6545, Ameliorates Hypometabolic Obesity and Improves Adipokine Secretion in Monosodium Glutamate Induced Obese Mice. Front Pharmacol. 2018;9:156. DOI: 10.3389/fphar.2018.00156.
  • Paszkiewicz RL, Bergman RN, Santos RS, Frank AP, Woolcott OO, Iyer MS, et al. A Peripheral CB1R Antagonist Increases Lipolysis, Oxygen Consumption Rate, and Markers of Beiging in 3T3-L1 Adipocytes Similar to RIM, Suggesting that Central Effects Can Be Avoided. Int J Mol Sci. 2020;21(18):6639. DOI: 10.3390/ijms21186639.
  • Müller GA, Herling AW, Wied S, Müller TD. CB1 Receptor-Dependent and Independent Induction of Lipolysis in Primary Rat Adipocytes by the Inverse Agonist Rimonabant (SR141716A). Molecules. 2020;25(4):896. DOI: 10.3390/molecules25040896.
  • Tam J, Cinar R, Liu J, Godlewski G, Wesley D, Jourdan T, Szanda G, Mukhopadhyay B, Chedester L, Liow JS, Innis RB, Cheng K, Rice KC, Deschamps JR, Chorvat RJ, McElroy JF, Kunos G. Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab. 2012;16(2):167-79. DOI: 10.1016/j.cmet.2012.07.002.
  • Tam J, Szanda G, Drori A, Liu Z, Cinar R, Kashiwaya Y, Reitman ML, Kunos G. Peripheral cannabinoid-1 receptor blockade restores hypothalamic leptin signaling. Mol Metab. 2017;6(10):1113-25. DOI: 10.1016/j.molmet.2017.06.010.
  • Drori A, Gammal A, Azar S, Hinden L, Hadar R, Wesley D, et al. CB1R regulates soluble leptin receptor levels via CHOP, contributing to hepatic leptin resistance. Elife. 2020;9:e60771. DOI: 10.7554/eLife.60771.
  • Scheyer AF, Laviolette SR, Pelissier AL, Manzoni OJJ. Cannabis in Adolescence: Lasting Cognitive Alterations and Underlying Mechanisms. Cannabis Cannabinoid Res. 2023;8(1):12-23. DOI: 10.1089/can.2022.0183.
  • Moulin V, Alameda L, Framorando D, Baumann PS, Gholam M, Gasser J, et al. Early onset of cannabis use and violent behavior in psychosis. Eur Psychiatry. 2020;63(1):e78. DOI: 10.1192/j.eurpsy.2020.71.
  • Sideli L, Quigley H, La Cascia C, Murray RM. Cannabis Use and the Risk for Psychosis and Affective Disorders. J Dual Diagn. 2020;16(1):22-42. DOI: 10.1080/15504263.2019.1674991.
  • Bagot KS, Milin R, Kaminer Y. Adolescent initiation of cannabis use and early-onset psychosis. Subst Abus. 2015;36(4):524-33. DOI: 10.1080/08897077.2014.995332.
  • Boyaji S, Merkow J, Elman RNM, Kaye AD, Yong RJ, Urman RD. The Role of Cannabidiol (CBD) in Chronic Pain Management: An Assessment of Current Evidence. Curr Pain Headache Rep. 2020;24(2):4. DOI: 10.1007/s11916-020-0835-4.
  • de Almeida DL, Devi LA. Diversity of molecular targets and signaling pathways for CBD. Pharmacol Res Perspect. 2020;8(6):e00682. DOI: 10.1002/prp2.682.
  • Stella B, Baratta F, Della Pepa C, Arpicco S, Gastaldi D, Dosio F. Cannabinoid Formulations and Delivery Systems: Current and Future Options to Treat Pain. Drugs. 2021;81(13):1513-57. DOI: 10.1007/s40265-021-01579-x.
  • Williams NNB, Ewell TR, Abbotts KSS, Harms KJ, Woelfel KA, Dooley GP, et al. Comparison of five oral cannabidiol preparations in adult humans: pharmacokinetics, body composition, and heart rate variability. Pharmaceuticals. 2021;14(1):35. DOI: 10.3390/ph14010035.
  • Ficha técnica de Sativex [Internet]. Agencia Española del Medicamento y Productos Sanitarios; 2022. Disponible en: https://cima.aemps.es/cima/dochtml/ft/72544/FT_72544.html