Virtual Reality for Motor Recovery in Stroke Rehabilitation

  1. Moral-Munoz, Jose A. 12
  2. Luque-Moreno, Carlos 34
  3. Lucena-Anton, David 12
  1. 1 Department of Nursing and Physiotherapy, University of Cadiz, Cadiz, Spain
  2. 2 Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
  3. 3 Department of Physiotherapy, University of Seville, Seville, Spain
  4. 4 Institute of Biomedicine of Seville (IBiS), Seville, Spain
Libro:
Ischemic Stroke Therapeutics

ISBN: 9783031499623 9783031499630

Año de publicación: 2024

Páginas: 331-344

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-031-49963-0_25 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

This chapter is aimed to introduce the different key features of virtual reality (VR) systems and its potential use for stroke motor recovery. It provided a synthesis of the scientific evidence based on systematic reviews and meta-analyses, on the effects of VR interventions in patients with stroke.The required features of VR systems to offer an individualized therapy were: immersion, presence and embodiment levels, reinforced feedback, and types of VR systems according to the purpose of their hardware. VR systems were classified in specific rehabilitation VR systems, which incorporate principles of neurorehabilitation that potentially enhance learning and recovery, and commercial VR video game consoles, which are mainly designed to entertainment purposes.Scientific literature showed potential benefits of VR interventions on balance, gait, and upper-limb motor function. However, the evidence on quality of life and upper-limb muscle strength is still limited. Most benefits were obtained when VR was added to conventional physical therapy (CPT) and, consequently, the increased dosage of therapy could be determinant. Therefore, this chapter provides a starting point on which to make decisions in research and clinical settings. Further research is needed to analyze whether VR interventions are more effective than CPT when the same dosage is used.

Referencias bibliográficas

  • Weiss PL, Kizony R, Feintuch U, Katz N. Virtual reality in neurorehabilitation. In: Selzer M, Clarke S, Cohen L, Duncan P, Gage F, editors. Textbook of neural repair and rehabilitation. Cambridge: Cambridge University Press; 2006. p. 182–97.
  • Pourmand A, Davis S, Lee D, Barber S, Sikka N. Emerging utility of virtual reality as a multidisciplinary tool in clinical medicine. Games Health J. 2017;6(5):263–70.
  • Keshner EA, Weiss PT, Geifman D, Raban D. Tracking the evolution of virtual reality applications to rehabilitation as a field of study. J Neuroeng Rehabil. 2019;16(1):76.
  • Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11(11):CD008349.
  • Szczepańska-Gieracha J, Cieślik B, Rutkowski S, Kiper P, Turolla A. What can virtual reality offer to stroke patients? A narrative review of the literature. NeuroRehabilitation. 2020;47(2):109–20.
  • Henderson A, Korner-Bitensky N, Levin M. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil. 2007;14(2):52–61.
  • Serrada I, Hordacre B, Hillier SL. Does sensory retraining improve sensation and sensorimotor function following stroke: a systematic review and meta-analysis. Front Neurosci. 2019;13:402.
  • Lin C-Y, Tsai C-M, Shih P-C, Wu H-C. Development of a novel haptic glove for improving finger dexterity in poststroke rehabilitation. Hsieh W-H, editor. Technol Health Care. 2015;24(s1):S97–103.
  • Kilteni K, Groten R, Slater M. The sense of embodiment in virtual reality. Presence Teleoperators Virtual Environ. 2012;21(4):373–87.
  • Borrego A, Latorre J, Alcañiz M, Llorens R. Embodiment and presence in virtual reality after stroke. A comparative study with healthy subjects. Front Neurol. 2019;10:1061.
  • Luque-Moreno C, Ferragut-Garcías A, Rodríguez-Blanco C, Heredia-Rizo AM, Oliva-Pascual-Vaca J, Kiper P, et al. A decade of Progress using virtual reality for poststroke lower extremity rehabilitation: systematic review of the intervention methods. Biomed Res Int. 2015;2015:342529.
  • Luque-Moreno C, Cano-Bravo F, Kiper P, Solís-Marcos I, Moral-Munoz JA, Agostini M, et al. Reinforced feedback in virtual environment for plantar flexor poststroke spasticity reduction and gait function improvement. Biomed Res Int. 2019;2019:6295263.
  • Veličković P, Milovanović M. Improvement of the interaction model aimed to reduce the negative effects of cybersickness in VR rehab applications. Sensors (Basel). 2021;21(2):321.
  • Sveistrup H. Motor rehabilitation using virtual reality. J Neuroeng Rehabil. 2004;1(1):10.
  • Weech S, Kenny S, Barnett-Cowan M. Presence and cybersickness in virtual reality are negatively related: a review. Front Psychol. 2019;10:158.
  • Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–54.
  • Kiper P, Agostini M, Luque-Moreno C, Tonin P, Turolla A. Reinforced feedback in virtual environment for rehabilitation of upper extremity dysfunction after stroke: preliminary data from a randomized controlled trial. Biomed Res Int. 2014;2014:752128.
  • Luque-Moreno C, Oliva-Pascual-Vaca A, Kiper P, Rodríguez-Blanco C, Agostini M, Turolla A. Virtual reality to assess and treat lower extremity disorders in post-stroke patients. Methods Inf Med. 2016;55(1):89–92.
  • Teo W-P, Muthalib M, Yamin S, Hendy AM, Bramstedt K, Kotsopoulos E, et al. Does a combination of virtual reality, neuromodulation and neuroimaging provide a comprehensive platform for neurorehabilitation?—a narrative review of the literature. Front Hum Neurosci. 2016;10:284.
  • Maier M, Rubio Ballester B, Duff A, Duarte Oller E, Verschure PFMJPFMJ. Effect of specific over nonspecific VR-based rehabilitation on poststroke motor recovery: a systematic meta-analysis. Neurorehabil Neural Repair. 2019;33(2):112–29.
  • Perez-Marcos D. Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation. J Neuroeng Rehabil. 2018;15(1):113.
  • Standen PJ, Threapleton K, Richardson A, Connell L, Brown DJ, Battersby S, et al. A low cost virtual reality system for home based rehabilitation of the arm following stroke: a randomised controlled feasibility trial. Clin Rehabil. 2017;31(3):340–50.
  • Chen Y, Abel KT, Janecek JT, Chen Y, Zheng K, Cramer SC. Home-based technologies for stroke rehabilitation: a systematic review. Int J Med Inform. 2019;123:11–22.
  • Deutsch JE, Lewis JA, Burdea G. Technical and patient performance using a virtual reality-integrated telerehabilitation system: preliminary finding. IEEE Trans Neural Syst Rehabil Eng. 2007;15(1):30–5.
  • You SH, Jang SH, Kim YH, Hallett M, Ahn SH, Kwon YH, et al. Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke. 2005;36(6):1166–71.
  • Darbois N, Guillaud A, Pinsault N. Do robotics and virtual reality add real Progress to Mirror therapy rehabilitation? A Scoping Review. Rehabil Res Pract. 2018;2018:1–15.
  • Mirelman A, Bonato P, Deutsch JE. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke. 2009;40(1):169–74.
  • Yang Y-R, Tsai M-P, Chuang T-Y, Sung W-H, Wang R-Y. Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial. Gait Posture. 2008;28(2):201–6.
  • Cho KH, Lee WH. Virtual walking training program using a real-world video recording for patients with chronic stroke: a pilot study. Am J Phys Med Rehabil. 2013;92(5):371–80. quiz 380–2, 458
  • Cho KH, Lee WH. Effect of treadmill training based real-world video recording on balance and gait in chronic stroke patients: a randomized controlled trial. Gait Posture. 2014;39(1):523–8.
  • Yong Joo L, Soon Yin T, Xu D, Thia E, Pei Fen C, Kuah CWK, et al. A feasibility study using interactive commercial off-the-shelf computer gaming in upper limb rehabilitation in patients after stroke. J Rehabil Med. 2010;42(5):437–41.
  • González-Fernández M, Gil-Gómez J-A, Alcañiz M, Noé E, Colomer C. eBaViR, easy balance virtual rehabilitation system: a study with patients. Stud Health Technol Inform. 2010;154:61–6.
  • Laffont I, Bakhti K, Coroian F, van Dokkum L, Mottet D, Schweighofer N, et al. Innovative technologies applied to sensorimotor rehabilitation after stroke. Ann Phys Rehabil Med. 2014;57(8):543–51.
  • Fritz SL, Peters DM, Merlo AM, Donley J. Active video-gaming effects on balance and mobility in individuals with chronic stroke: a randomized controlled trial. Top Stroke Rehabil. 2013;20(3):218–25.
  • de Vries AW, Faber G, Jonkers I, Van Dieen JH, Verschueren SMP. Virtual reality balance training for elderly: similar skiing games elicit different challenges in balance training. Gait Posture. 2018;59:111–6.
  • Givon Schaham N, Zeilig G, Weingarden H, Rand D. Game analysis and clinical use of the Xbox-Kinect for stroke rehabilitation. Int J Rehabil Res. 2018;41(4):323–30.
  • Norouzi-Gheidari N, Hernandez A, Archambault PS, Higgins J, Poissant L, Kairy D. Feasibility, safety and efficacy of a virtual reality exergame system to supplement upper extremity rehabilitation post-stroke: a pilot randomized clinical trial and proof of principle. Int J Environ Res Public Health. 2019;17(1):113.
  • Saldana D, Neureither M, Schmiesing A, Jahng E, Kysh L, Roll SC, et al. Applications of head-mounted displays for virtual reality in adult physical rehabilitation: a scoping review. Am J Occup Ther. 2020;74(5):7405205060p1.
  • García-Bravo S, Cuesta-Gómez A, Campuzano-Ruiz R, López-Navas MJ, Domínguez-Paniagua J, Araújo-Narváez A, et al. Virtual reality and video games in cardiac rehabilitation programs. A systematic review. Disabil Rehabil. 2019:1–10.
  • Lisa LP, Jughters A, Kerckhofs E. The effectiveness of different treatment modalities for the rehabilitation of unilateral neglect in stroke patients: a systematic review. NeuroRehabilitation. 2013;33(4):611–20.
  • Ogourtsova T, Souza Silva W, Archambault PS, Lamontagne A. Virtual reality treatment and assessments for post-stroke unilateral spatial neglect: a systematic literature review. Neuropsychol Rehabil. 2017;27(3):409–54.
  • Takeuchi N, Izumi S-I. Rehabilitation with poststroke motor recovery: a review with a focus on neural plasticity. Stroke Res Treat. 2013;2013:128641.
  • Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, et al. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004;35(11):2529–39.
  • Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, et al. Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther. 2002;82(9):898–915.
  • Tieri G, Morone G, Paolucci S, Iosa M. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. Expert Rev Med Devices. 2018;15(2):107–17.
  • Hochstenbach J, Mulder T, Van LJ, Donders R, Schoonderwaldt H. Cognitive decline following stroke : a comprehensive study of cognitive decline following stroke. J Clin Exp Neuropsychol. 1998;20(4):503–17.
  • Domínguez-Téllez P, Moral-Muñoz JA, Salazar A, Casado-Fernández E, Lucena-Antón D. Game-based virtual reality interventions to improve upper limb motor function and quality of life after stroke: systematic review and meta-analysis. Games Health J. 2020;9(1):1–10.
  • Jang SH, You SH, Hallett M, Cho YW, Park C-M, Cho S-H, et al. Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Arch Phys Med Rehabil. 2005;86(11):2218–23.
  • Teasell RW, Murie Fernandez M, McIntyre A, Mehta S. Rethinking the continuum of stroke rehabilitation. Arch Phys Med Rehabil. 2014;95(4):595–6.
  • Iruthayarajah J, McIntyre A, Cotoi A, Macaluso S, Teasell R. The use of virtual reality for balance among individuals with chronic stroke: a systematic review and meta-analysis. Top Stroke Rehabil. 2017;24(1):68–79.
  • Gibbons EM, Nicole Thomson A, De Noronha M, Joseph S. Are virtual reality technologies effective in improving lower limb outcomes for patients following stroke—a systematic review with metaanalysis. Top Stroke Rehabil. 2016;23(6):440–57.
  • Kiper P, Luque-Moreno C, Pernice S, Maistrello L, Agostini M, Turolla A. Functional changes in the lower extremity after non-immersive virtual reality and physiotherapy following stroke. J Rehabil Med. 2020;52(11):jrm00122.
  • Imam B, Jarus T. Virtual reality rehabilitation from social cognitive and motor learning theoretical perspectives in stroke population. Rehabil Res Pract. 2014;2014:594540.
  • Adamovich SV, Fluet GG, Tunik E, Merians AS. Sensorimotor training in virtual reality: a review. NeuroRehabilitation. 2009;25(1):29–44.
  • Sisto SA, Forrest GF, Glendinning D. Virtual reality applications for motor rehabilitation after stroke. Top Stroke Rehabil. 2002;8(4):11–23.
  • Merians AS, Tunik E, Adamovich SV. Virtual reality to maximize function for hand and arm rehabilitation: exploration of neural mechanisms. Stud Health Technol Inform. 2009;145:109–25.
  • Kitago T, Krakauer JW. Motor learning principles for neurorehabilitation. Handb Clin Neurol. 2013;110:93–103.
  • Lohse KR, Hilderman CGE, Cheung KL, Tatla S, Van Der LHFM. Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One. 2014;9(3):e93318.
  • Mehrholz J, Thomas S, Kugler J, Pohl M, Elsner B. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev. 2020;5(5):CD006185.
  • Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS. Recovery of walking function in stroke patients: the Copenhagen stroke study. Arch Phys Med Rehabil. 1995;76(1):27–32.
  • Moreira MC, De Amorim Lima AM, Ferraz KM, Benedetti Rodrigues MA. Use of virtual reality in gait recovery among post stroke patients-a systematic literature review. Disabil Rehabil Assist Technol. 2013;8(5):357–62.
  • Broeren J, Sunnerhagen KS, Rydmark M. Haptic virtual rehabilitation in stroke: transferring research into clinical practice. Phys Ther Rev. 2009;14(5):322–35.
  • Rodrigues-Baroni JM, Nascimento LR, Ada L, Teixeira-Salmela LF. Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: systematic review with meta-analysis. Braz J Phys Ther. 2014;18(6):502–12.
  • Corbetta D, Imeri F, Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. J Physiother. 2015;61(3):117–24.
  • Kim JH, Jang SH, Kim CS, Jung JH, You JH. Use of virtual reality to enhance balance and ambulation in chronic stroke: a double-blind, randomized controlled study. Am J Phys Med Rehabil. 2009;88(9):693–701.
  • de Rooij IJM, van de Port IGL, Meijer JWG. Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. Phys Ther. 2016;96(12):1905–18.
  • French B, Thomas LH, Leathley MJ, Sutton CJ, McAdam J, Forster A, et al. Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev. 2007;4:CD006073.
  • Mao Y, Chen P, Li L, Li L, Huang D. Changes of pelvis control with subacute stroke: a comparison of body-weight- support treadmill training coupled virtual reality system and over-ground training. Ciaccio EJ, editor. Technol Health Care. 2015;23(s2):S355–64.
  • Dominguez-Tellez P, Moral-Munoz JA, Casado-Fernandez E, Salazar A, Lucena-Anton D. Effects of virtual reality on balance and gait in stroke: a systematic review and meta-analysis. Rev Neurol. 2019;69(6):223–34.
  • Ghai S, Ghai I, Lamontagne A. Virtual reality training enhances gait poststroke: a systematic review and meta-analysis. Ann N Y Acad Sci. 2020;1478(1):18–42.
  • Biernaskie J. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004;24(5):1245–54.
  • Lamb SE, Ferrucci L, Volapto S, Fried LP, Guralnik JM, Women’s Health and Aging Study. Risk factors for falling in home-dwelling older women with stroke: the Women’s Health and Aging Study. Stroke. 2003;34(2):494–501.
  • Corriveau H, Hébert R, Raiche M, Prince F. Evaluation of postural stability in the elderly with stroke. Arch Phys Med Rehabil. 2004;85(7):1095–101.
  • de Haart M, Geurts AC, Huidekoper SC, Fasotti L, van Limbeek J. Recovery of standing balance in postacute stroke patients: a rehabilitation cohort study11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the authors(s) or upo. Arch Phys Med Rehabil. 2004;85(6):886–95.
  • Nichols DS, Miller L, Colby LA, Pease WS. Sitting balance: its relation to function in individuals with hemiparesis. Arch Phys Med Rehabil. 1996;77(9):865–9.
  • Tsang YL, Mak MK. Sit-and-reach test can predict mobility of patients recovering from acute stroke11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any org. Arch Phys Med Rehabil. 2004;85(1):94–8.
  • Tyson SF, Hanley M, Chillala J, Selley A, Tallis RC. Balance disability after stroke. Phys Ther. 2006;86(1):30–8.
  • Dos Santos LRA, Carregosa AA, Masruha MR, Dos Santos PA, Da Silveira Coêlho ML, Ferraz DD, et al. The use of Nintendo Wii in the rehabilitation of poststroke patients: a systematic review. J Stroke Cerebrovasc Dis. 2015;24(10):2298–305.
  • Viñas-Diz S, Sobrido-Prieto M. Realidad virtual con fines terapéuticos en pacientes con ictus: Revisión sistemática. Neurologia. 2016;31(4):255–77.
  • Orihuela-Espina F, Del CIF, Palafox L, Pasaye E, Sánchez-Villavicencio I, Leder R, et al. Neural reorganization accompanying upper limb motor rehabilitation from stroke with virtual reality-based gesture therapy. Top Stroke Rehabil. 2013;20(3):197–209.
  • Li Z, Han XG, Sheng J, Ma SJ. Virtual reality for improving balance in patients after stroke: a systematic review and meta-analysis. Clin Rehabil. 2016;30(5):432–40.
  • García-Muñoz C, Casuso-Holgado MJ. Effectiveness of Wii Fit Balance board in comparison with other interventions for post-stroke balance rehabilitation. Systematic review and meta-analysis. Rev Neurol. 2019;69(7):271–9.
  • Juras G, Brachman A, Michalska J, Kamieniarz A, Hadamus A. Standards of virtual reality application in balance training programs in clinical practice: a systematic review. Games Health J. 2019;8(2):1–11.
  • Mohammadi R, Semnani AV, Mirmohammadkhani M, Grampurohit N. Effects of virtual reality compared to conventional therapy on balance poststroke: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2019;28(7):1787–98.
  • Barden HLH, Baguley IJ, Nott MT, Heard R, Chapparo C. Measuring task performance after acquired brain injury: construct and concurrent validity of ‘Upper Limb Performance Analysis.’. Brain Inj. 2015;29(10):1223–31.
  • Santisteban L, Térémetz M, Bleton J-P, Baron J-C, Maier MA, Lindberg PG. Upper limb outcome measures used in stroke rehabilitation studies: a systematic literature review. Tremblay F, editor. PLoS One. 2016;11(5):e0154792.
  • Demers M, Levin MF. Do activity level outcome measures commonly used in neurological practice assess upper-limb movement quality? Neurorehabil Neural Repair. 2017;31(7):623–37.
  • Saposnik G, Levin M. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke. 2011;42(5):1380–6.
  • Thomson K, Pollock A, Bugge C, Brady M. Commercial gaming devices for stroke upper limb rehabilitation: a systematic review. Int J Stroke. 2014;9(4):479–88.
  • Yates M, Kelemen A, Sik LC. Virtual reality gaming in the rehabilitation of the upper extremities post-stroke. Brain Inj. 2016;30(7):855–63.
  • Ortiz Huerta JH, de Heredia P, Torres M, Guijo Blanco V, Santamaría Vázquez M. Eficacia de la intervención con videoconsolas en pacientes con ictus: revisión sistemática. Rev Neurol. 2018;66(2):49–58.
  • Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377(9778):1693–702.
  • van Lieshout ECC, van de Port IG, Dijkhuizen RM, Visser-Meily JMA. Does upper limb strength play a prominent role in health-related quality of life in stroke patients discharged from inpatient rehabilitation? Top Stroke Rehabil. 2020;27(7):525–33.
  • Chen Q, Cao C, Gong L, Zhang Y. Health related quality of life in stroke patients and risk factors associated with patients for return to work. Medicine (Baltimore). 2019;98(16):e15130.
  • Pulman J, Buckley E. Assessing the efficacy of different upper limb hemiparesis interventions on improving health-related quality of life in stroke patients: a systematic review. Top Stroke Rehabil. 2013;20(2):171–88.
  • Shan L, Shan J, Saxena A, Robinson D. Quality of life and functional status after carotid revascularisation: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2015;49(6):634–45.
  • Prazeres A, Lira M, Aguiar P, Monteiro L, Vilasbôas Í, Melo A. Efficacy of physical therapy associated with botulinum toxin type a on functional performance in post-stroke spasticity: a randomized, double-blinded, placebo-controlled trial. Neurol Int. 2018;10(2):7385.