JOSE CARLOS
CAMACHO MORENO
Profesor Titular de Universidad
Publications (13) JOSE CARLOS CAMACHO MORENO publications
2019
-
Conservation laws, symmetries, and exact solutions of the classical Burgers–Fisher equation in two dimensions
Journal of Computational and Applied Mathematics, Vol. 354, pp. 545-550
2018
-
Classical symmetries and conservation laws for the dissipative Dullin-Gottwald-Holm equation with arbitrary coefficients
Mathematical Methods in the Applied Sciences, Vol. 41, Núm. 17, pp. 7304-7312
-
Lie symmetries and conservation laws for a generalized kuramoto-sivashinsky equation
Mathematical Methods in the Applied Sciences, Vol. 41, Núm. 17, pp. 7295-7303
2017
-
Classical and potential symmetries for a generalized Fisher equation
Journal of Computational and Applied Mathematics, Vol. 318, pp. 181-188
-
Classical symmetries, travelling wave solutions and conservation laws of a generalized Fornberg–Whitham equation
Journal of Computational and Applied Mathematics, Vol. 318, pp. 149-155
-
Lie Symmetries for a generalized fourth order nonlinear wave equation
17th International Conference Computational and Mathematical Methods in Science and Engineering. ’CMMSE” 2017
2014
-
Simetrías clásicas y soluciones para dos ecuaciones generalizadas de las vibraciones de una viga
4ta. Conferencia Iberoamericana en Sistemas, Cibernetica e Informatica, CISCI 2005, Memorias
2012
-
Symmetry reductions for a generalized Dullin-Gottwald-Holm equation
AIP Conference Proceedings
2011
-
Exact travelling wave solutions of a beam equation
Journal of Nonlinear Mathematical Physics
2008
-
Symmetry analysis and solutions for a generalization of a family of BBM equations
Journal of Nonlinear Mathematical Physics
2007
-
Avances en matemática discreta en Andalucía: V Encuentro Andaluz de Matemática Discreta, La Línea de la Concepción (Cádiz), julio de 2007
coord.
Servicio de Publicaciones
-
Classical and nonclassical symmetries for a Kuramoto-Sivashinsky equation with dispersive effects
Mathematical Methods in the Applied Sciences, Vol. 30, Núm. 16, pp. 2091-2100
-
Simetrías potenciales de un modelo matemático que describe las vibraciones de una viga
XX Congreso de ecuaciones diferenciales y aplicaciones y X Congreso de Matemáticas aplicadas