Cambio del conocimiento sobre la enseñanza de las ciencias de futuros maestros

  1. Rivero, Ana 1
  2. Martín del Pozo, Rosa 2
  3. Solís, Emilio 1
  4. Azcárate, Pilar 3
  5. Porlán, Rafael 1
  1. 1 Universidad de Sevilla
    info

    Universidad de Sevilla

    Sevilla, España

    ROR https://ror.org/03yxnpp24

  2. 2 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  3. 3 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

Zeitschrift:
Enseñanza de las ciencias: revista de investigación y experiencias didácticas

ISSN: 0212-4521 2174-6486

Datum der Publikation: 2017

Ausgabe: 35

Nummer: 1

Seiten: 29-52

Art: Artikel

DOI: 10.5565/REV/ENSCIENCIAS.2068 DIALNET GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Enseñanza de las ciencias: revista de investigación y experiencias didácticas

Zusammenfassung

This paper describes and analyzes the proposals made by 92 teams of future teachers to teach concrete contents of science when starting and finishing an initial training course of constructivist orientation, taking as reference the model of school research. In order to study the change in their knowledge about science teaching, we have selected four categories: the presentation of the contents to the students, the didactic use of their ideas, the methodological sequence followed and the purpose of the assessment. The results show that less one team, all the others are in an initial situation in a traditional approach to teaching. However, at the end of the course, 55 teams are in transition towards school research with different degrees of progression while 37 teams continue in the first approach. In all of them the methodological sequence is the category that progresses the most, whereas the purpose of the evaluation is the most resistant to change. Finally, we indicate the implications in the initial formation of teachers.

Informationen zur Finanzierung

Este artículo es parte del Proyecto I+D+i EDU2011-23551: La progresión del conocimiento didáctico de los futuros maestros en un curso basado en la investigación y en la interacción con una enseñanza innovadora de las ciencias, financiado por el entonces Ministerio de Ciencia e Innovación. Los resultados de este artículo son parte del trabajo conjunto con Isabel Escrivà Colomar, Soraya Hamed Al-Lal y Lidia López Lozano, en sus planes de investigación y proyectos de tesis, enmarcados en el citado proyecto.

Geldgeber

Bibliographische Referenzen

  • Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A. y Tuan, H. L. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), pp. 397-419. https://doi.org/10.1002/sce.10118
  • Abell, S. K. (2007). Research on science teacher knowledge. En S. K. Abell y N. Lederman (eds.), Handbook of Research on Science Education. New Jersey: Lawrence Erlbaum Associates, pp. 11051149.
  • Abell, S. K. (2008). Twenty years later: Does pedagogical content knowledge remain a useful idea? International Journal of Science Education, 30(10), pp. 1405-1416.https://doi.org/10.1080/09500690802187041
  • Abell, S. K., Appleton, K. y Hanuscin, D. (2010). Designing the elementary science methods course. NY: Routledge-Taylor y Francis.
  • Ambrose, R. (2004). Initiating change in prospective elementary school teachers’ orientations to Mathematics teaching by building on beliefs. Journal of Mathematics Teacher Education, 7, pp. 91-119. https://doi.org/10.1023/B:JMTE.0000021879.74957.63
  • Appleton, K. (2005). Elementary science teacher education: International perspectives. Mahwah, NJ: Erlbaum.
  • Bardin, L. (1986). El análisis de contenido. Madrid: Akal.
  • Bell, R., Smetana, L. y Binns, I. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7), pp. 30-34.
  • Beswick, K. (2006). Changes in preservice teachers’attitudes and beliefs: the net impact of two mathematics education units and intervening experiences. School Science and Mathematics, 106(1), pp. 36-47.https://doi.org/10.1111/j.1949-8594.2006.tb18069.x
  • Binns, I. C. y Popp, S. (2013). Learning to teach science through inquiry: experiences of preservice teachers. Electronic Journal of Science Education, 17(1), pp. 1-24.
  • Bryan, L. (2003). Nestedness of beliefs: Examining a prospective elementary teacher’s beliefs system about science teaching and learning. Journal of Research in Science Teaching, 40, pp. 835-868. https://doi.org/10.1002/tea.10113
  • Cañal, P., Pozuelos, P. y Travé, G. (2005). Proyecto curricular Investigando Nuestro Mundo. Descripción general y fundamentos. Sevilla: Diada.
  • Cañal, P., Travé, G. y Pozuelos, F. J. (2011). Análisis de obstáculos y dificultades de profesores y estudiantes en la utilización de enfoques de investigación escolar. Investigación en la Escuela, 73, pp. 5-26.
  • Cheng, M. M. H., Chan, K. W., Tang, S. Y. F. y Cheng, A. Y. N. (2009). Pre-service teacher education students’ epistemological beliefs and their conceptions of teaching. Teaching and Teacher Education, 25, pp. 319-327. https://doi.org/10.1016/j.tate.2008.09.018
  • Couso, D. (2014). De la moda de «aprender indagando» a la indagación para modelizar: una reflexión crítica. Actas de los 26 Encuentros de Didáctica de las Ciencias Experimentales. Huelva: Universidad de Huelva.
  • Crawford, B. y Capps, D. (2016). What knowledge do teachers need for engaging children in science practices? En J. Dori, Z. Mevarech, D. Baker (eds.), Cognition, Metacognition, and Culture in STEM Education. New York: Springer.
  • Crawford, B. A., Capps, D. K., Van Driel, J., Lederman, N., Lederman, J., Luft, J., Wong, S., Tan, A. L., Lim, S., Loughran, J. y Smith, K. (2014). Learning to teach science as inquiry: developing an evidence-based framework for effective teacher professional development. En N. Lederman y S. Abell (eds.), Handbook of research on science education. New York: Rutledge, pp. 193-211. https://doi.org/10.1007/978-94-007-7281-6_12
  • Duit, R. y Treagust, D. (2003). Conceptual change: a powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), pp. 671-688. https://doi.org/10.1080/09500690305016
  • Duschl, R., Maeng, S. y Sezen, A. (2011). Learning progressions and teaching sequences: a review and analysis. Studies in Science Education, 47(2), pp. 123-182. https://doi.org/10.1080/03057267.2011.604476
  • Erickson, F. (2012). Qualitative research methods for science education. En B. J. Fraser et al. (eds.), Second International Handbook of Science Education. Springer International Handbooks of Education, pp. 1452-1473. https://doi.org/10.1007/978-1-4020-9041-7_93
  • Fisher, H. E., Borowski, A. y Tepner, O. (2012). Professional Knowledge of Science Education. En B. Fraser, K. Tobin y C. McRobbie (eds.), Second International Handbook of Science Education, pp. 771-782.
  • Friedrichsen, P., Van Driel, J. H. y Abell, S. K. (2011). Taking a closer look at science teaching orientations. Science Education, 95(2), pp. 358-376. https://doi.org/10.1002/sce.20428
  • Goodnough, K. y Hung, W. (2009). Enhancing pedagogical content knowledge in elementary science. Teaching Education, 20(3), pp. 229-242. https://doi.org/10.1080/10476210802578921
  • Haefner, L. A. y Zembal-Saul, C. (2004). Learning by doing? Prospective elementary teachers’ developing understandings of scientific inquiry and science teaching and learning. International Journal of Science Education, 26(13), pp. 1653-1674. https://doi.org/10.1080/0950069042000230709
  • Hernández, M. I., Couso, D. y Pintó, R. (2014). Analyzing Students’ Learning Progressions Throughout a Teaching Sequence on Acoustic Properties of Materials with a Model-Based Inquiry Approach. Journal of Science Education and Technology, 2, pp. 356-377.https://doi.org/10.1007/s10956-014-9503-y
  • Hmelo-Silver, C. E., Duncan, R. G. y Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark. Educational Psychologist, 42(2), pp. 99-107. https://doi.org/10.1080/00461520701263368
  • Kaya, O. N. (2009). The nature of relationships among the components of pedagogical content knowledge of preservice science teachers: «Ozone layer depletion» as an example. International Journal of Science Education, 31(7), pp. 961-988. https://doi.org/10.1080/09500690801911326
  • Lederman, N. G., Lederman, J. S. y Antink, A. (2013). Nature of science and scientific inquiry as contexts for the learning of science and achievement of scientific literacy. International Journal of Education in Mathematics, Science and Technology, 1(3), pp. 138-147.
  • Magnusson, S., Krajcik, J. y Borko, H. (1999). Nature, sources and development of pedagogical content knowledge for science teaching. En J. Gess-Newsome y N. G. Lederman (eds.), Examining pedagogical content knowledge: The construct and its implications for science education. Dordrecht, The Netherlands: Kluwer Academic, pp. 95-132.
  • Martínez-Chico, M., Jiménez, R. y López-Gay, R. (2015). Efecto de un programa formativo para enseñar ciencias por indagación basada en modelos, en las concepciones didácticas de los futuros maestros. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 12(1), pp. 149-166. https://doi.org/10498/16929
  • Martínez-Chico, M., López-Gay, R. y Jiménez-Liso, R. (2014). ¿Es posible diseñar un programa formativo para enseñar ciencias por Indagación basada en Modelos en la formación inicial de maestros? Fundamentos, exigencias y aplicación. Didáctica de las ciencias experimentales y sociales, 28, pp. 153-173.
  • Mellado, V. (1998). Preservice teachers’ classroom practice and their conceptions of the nature of science. En B. J. Fraser y K. Tobin (eds.), International Handbook of Science Education. Kluwer Academic Publishers, pp. 1093-1105.
  • National Research Council (NRC) (2000). Inquiry and the national science education standards. Washington, DC: National Academy Press.
  • National Research Council (NRC) (2007). Taking Science to School: Learning and Teaching Science in Grades K-8. Washington, DC: The National Academies Press.
  • Pilitisis, V. y Duncan, R. G. (2012). Changes in Belief Orientations of Preservice Teachers and Their Relation to Inquiry Activities. Journal of Science Teacher Education, 23(8), pp. 909-936.https://doi.org/10.1007/s10972-012-9303-2
  • Porlán, R., Martín del Pozo, R., Rivero, A., Harres, J., Azcárate, P. y Pizzato, M. (2010). El cambio del profesorado de ciencias I: Marco teórico y formativo. Enseñanza de las Ciencias, 28(1), pp. 31-46.
  • Porlán, R., Martín del Pozo, R., Rivero, A., Harres, J., Azcárate, P. y Pizzato, M. (2011). El cambio del profesorado de ciencias II: Resultados y conclusiones sobre la progresión de las concepciones didácticas. Enseñanza de las Ciencias, 29(3), pp. 413-426.
  • Rennie, L. J., Goodrum, D. y Hackling, M. (2001). Science teaching and learning in Australian schools: Results of a national study. Research in Science Education, 31, pp. 455-498.https://doi.org/10.1023/A:1013171905815
  • Rivero, A., Porlán, R., Solís, E., Rodríguez, F., Hamed, S., Martín del Pozo, R., Ezquerra, A. y Azcárate, P. (2012). Aprender a enseñar ciencias en primaria. Actividades de formación inicial de maestros para aprender a enseñar ciencias por investigación escolar. Sevilla: Copiarte.
  • Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H. y Hemmo, V. (2007). Science Education Now: A renewed Pedagogy for the future of Europe. Belgium: European Communities.
  • Schneider, M. R. y Plasman, K. (2011). Science teacher learning progressions: a review of science teachers’ pedagogical content knowledge development. Review of Educational Research, 81(4), pp. 530-565. https://doi.org/10.3102/0034654311423382
  • Schwarz, C. (2009). Developing preservice elementary teachers’ knowledge and practices through modeling-centered scientific inquiry. Science Education, 93(4), pp. 720-744. https://doi.org/10.1002/sce.20324
  • Shulman, L. S. (1986). Those Who Understand: Knowledge Growth in Teaching. Educational Researcher, 15(2), pp. 4-14. https://doi.org/10.3102/0013189X015002004
  • Solís, E. y López-Lozano, L. (2014). Progresión del conocimiento sobre el qué enseñar en ciencias de los futuros maestros: un estudio longitudinal. XXVI Encuentros de Didáctica de las Ciencias Experimentales. Universidad de Huelva, 25, pp. 201-208.
  • Solís, E., Porlán, R. y Rivero, A. (2012). ¿Cómo representar el Conocimiento Curricular de los profesores de Ciencias y su evolución? Enseñanza de las Ciencias, 30(3), pp. 9-30.
  • Talanquer (2014). Conocimiento didáctico del contenido y progresiones de aprendizaje. En A. Garritz, G. Lorenzo y S. Daza-Rosales (coords.), Conocimiento didáctico del contenido. Una perspectiva iberoamericana. Saarbrücken (Alemania): Editorial Académica Española.
  • Tsai, C. C. (2006). Reinterpreting and reconstructing science: Teachers’ view changes toward the nature of science by courses of science education, Teaching and Teacher Education, 22(3), pp. 363375.https://doi.org/10.1016/j.tate.2004.06.010
  • Vilchez, J. M. y Bravo, B. (2015). Percepción del profesorado de ciencias de educación primaria en formación acerca de las etapas y acciones necesarias para realizar una indagación escolar. Enseñanza de las Ciencias, 33(1), pp. 185-202. https://doi.org/10.5565/rev/ensciencias.1529
  • Wang, J. L., Kao, H. L. y Lin, S. W. (2010). Preservice teachers’ initial conceptions about assessment of science learning: The coherence with their views of learning science. Teaching and Teacher Education, 26, pp. 522-529. https://doi.org/10.1016/j.tate.2009.06.014
  • Windschitl, M., Thompson, J. y Braaten, M. (2008). Beyond the scientific method: model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92, pp. 941-967. https://doi.org/10.1002/sce.20259
  • Zembal-Saul, C. (2009). Learning to teach elementary school science as argument. Science Education, 93(4), pp. 687-719. https://doi.org/10.1002/sce.20325
  • Zembal-Saul, C., Haefner, L. A., Avraamidou, L., Severs, M. y Dana, T. (2002). Web-based portfolios: A vehicle for examining prospective elementary teachers’ developing understandings of teaching science. Journal of Science Teacher Education, 13, pp. 283-230.