Biduality and density in Lipschitz function spaces

  1. Antonio Jiménez Vargas 1
  2. Juan Matías Sepulcre Martínez 3
  3. Moisés Villegas-Vallecillos 2
  1. 1 Universidad de Almería
    info

    Universidad de Almería

    Almería, España

    ROR https://ror.org/003d3xx08

  2. 2 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

  3. 3 Universitat d'Alacant
    info

    Universitat d'Alacant

    Alicante, España

    ROR https://ror.org/05t8bcz72

Journal:
Mathematica scandinavica

ISSN: 0025-5521

Year of publication: 2017

Volume: 121

Issue: 1

Pages: 92-100

Type: Article

DOI: 10.7146/MATH.SCAND.A-25987 DIALNET GOOGLE SCHOLAR

More publications in: Mathematica scandinavica

Metrics

Cited by

  • Scopus Cited by: 1 (22-03-2023)
  • Web of Science Cited by: 1 (20-03-2023)

JCR (Journal Impact Factor)

  • Year 2017
  • Journal Impact Factor: 0.394
  • Journal Impact Factor without self cites: 0.394
  • Article influence score: 0.411
  • Best Quartile: Q4
  • Area: MATHEMATICS Quartile: Q4 Rank in area: 275/310 (Ranking edition: SCIE)

SCImago Journal Rank

  • Year 2017
  • SJR Journal Impact: 0.442
  • Best Quartile: Q2
  • Area: Mathematics (miscellaneous) Quartile: Q2 Rank in area: 184/443

Scopus CiteScore

  • Year 2017
  • CiteScore of the Journal : 0.9
  • Area: Mathematics (all) Percentile: 44

Journal Citation Indicator (JCI)

  • Year 2017
  • Journal Citation Indicator (JCI): 0.68
  • Best Quartile: Q3
  • Area: MATHEMATICS Quartile: Q3 Rank in area: 247/462

Abstract

For pointed compact metric spaces (X,d), we address the biduality problem as to when the space of Lipschitz functions Lip0(X,d) is isometrically isomorphic to the bidual of the space of little Lipschitz functions lip0(X,d), and show that this is the case whenever the closed unit ball of lip0(X,d) is dense in the closed unit ball of Lip0(X,d) with respect to the topology of pointwise convergence. Then we apply our density criterion to prove in an alternative way the real version of a classical result which asserts that Lip0(X,dα) is isometrically isomorphic to lip0(X,dα)∗∗ for any α∈(0,1).