H-Terminated Diamond Surface Band Bending Characterization by Angle-Resolved XPS

  1. Alba, Gonzalo
  2. Eon, David
  3. Villar, M. Pilar
  4. Alcántara, Rodrigo
  5. Chicot, Gauthier
  6. Cañas, Jesús
  7. Letellier, Juliette
  8. Pernot, Julien
  9. Araujo, Daniel
  1. 1 Universidad de Cádiz
    info

    Universidad de Cádiz

    Cádiz, España

    ROR https://ror.org/04mxxkb11

  2. 2 Grenoble Alpes University
    info

    Grenoble Alpes University

    Saint-Martin-d’Hères, Francia

    ROR https://ror.org/02rx3b187

Revista:
Surfaces

ISSN: 2571-9637

Año de publicación: 2020

Volumen: 3

Número: 1

Páginas: 61-71

Tipo: Artículo

DOI: 10.3390/SURFACES3010007 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Surfaces

Resumen

Concerning diamond-based electronic devices, the H-terminated diamond surface is one ofthe most used terminations as it can be obtained directly by using H2 plasma, which also is a key stepfor diamond growth by chemical vapour deposition (CVD). The resultant surfaces present a p-typesurface conductive layer with interest in power electronic applications. However, the mechanismfor this behavior is still under discussion. Upward band bending due to surface transfer doping isthe most accepted model, but has not been experimentally probed as of yet. Recently, a downwardband bending very near the surface due to shallow acceptors has been proposed to coexist withsurface transfer doping, explaining most of the observed phenomena. In this work, a new approachto the measurement of band bending by angle-resolved X-ray photoelectron spectroscopy (ARXPS) isproposed. Based on this new interpretation, a downward band bending of 0.67 eV extended over0.5 nm was evidenced on a (100) H-terminated diamond surface.

Información de financiación

Referencias bibliográficas

  • 10.1098/rsta.2007.2153
  • 10.1016/j.diamond.2004.12.043
  • 10.1016/S0925-9635(98)00380-X
  • 10.1016/j.tsf.2006.07.179
  • 10.1016/j.apsusc.2016.04.166
  • 10.1063/1.4864060
  • 10.1063/1.5001070
  • 10.1063/1.2643374
  • 10.1016/j.mssp.2018.01.007
  • 10.1016/0039-6028(95)00039-9
  • 10.1016/j.diamond.2012.10.007
  • 10.1016/j.diamond.2017.04.012
  • 10.1016/j.progsurf.2009.06.002
  • 10.1016/j.susc.2006.01.087
  • 10.1103/PhysRevLett.85.3472
  • 10.1016/j.susc.2010.03.031
  • 10.1016/j.diamond.2019.01.017
  • 10.1016/0039-6028(90)90517-C
  • 10.1103/PhysRevB.65.153312
  • 10.1143/JJAP.42.3510
  • 10.1016/S0039-6028(03)00241-3
  • 10.1016/j.apsusc.2013.02.087
  • 10.1016/j.apsusc.2017.10.065
  • 10.1016/j.diamond.2009.02.010
  • 10.1016/j.diamond.2011.03.001
  • 10.1016/S0039-6028(99)01010-9
  • 10.1016/j.diamond.2015.10.028
  • 10.2478/s11534-011-0096-2
  • 10.1103/PhysRevB.25.4452
  • 10.1103/PhysRevB.57.12397
  • 10.1088/0031-8949/1990/T31/016
  • 10.1016/0079-6816(84)90001-7
  • 10.1016/j.susc.2009.01.033
  • 10.1063/1.2436649
  • 10.1063/1.1356452