Current Outlook and Perspectives on Nanoparticle-Mediated Magnetic Hyperthermia

  1. Blanco-Andujar, C. 1
  2. Teran, F.J. 2
  3. Ortega, D. 3
  1. 1 University College London, London, United Kingdom
  2. 2 IMDEA Nanoscience, Madrid, Spain
  3. 3 Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
Libro:
Iron Oxide Nanoparticles for Biomedical Applications

Editorial: Elsevier

ISBN: 978-0-08-101925-2

Año de publicación: 2018

Páginas: 197-245

Tipo: Capítulo de Libro

DOI: 10.1016/B978-0-08-101925-2.00007-3 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Iron oxide nanoparticles (IONP) are still the preferred choice for most applications in nanomedicine, and so, it is for magnetic hyperthermia in cancer therapy. However, many other materials have been tested through the preceding decades looking for an effective replacement of iron oxides, more capable to heat, with less intense fields, at lower doses. At the same time, the required instrumentation for in vitro and in vivo testing has evolved accordingly to become more versatile and portable but still focusing on safety. This chapter provides an overview of this intensive research and delves into a series of technical aspects that are yet to be solved.

Referencias bibliográficas

  • (2012)
  • Hildebrandt, (2002), Crit. Rev. Oncol. Hematol., 43, pp. 33, 10.1016/S1040-8428(01)00179-2
  • Hildebrandt, (2007), Cancer Treat. Res., 134, pp. 171
  • Dewhirst, (2016), Int. J. Hyperth., 32, pp. 4, 10.3109/02656736.2015.1091093
  • Ortega, (2012), pp. 60
  • Carrey, (2011), J. Appl. Phys., 109, 10.1063/1.3551582
  • Hergt, (2010), Nanotechnology, 21, 10.1088/0957-4484/21/1/015706
  • Usov, (2012), J. Appl. Phys., 112
  • Rosensweig, (2002), J. Magn. Magn. Mater., 252, pp. 370, 10.1016/S0304-8853(02)00706-0
  • Mamiya, (2013), J. Nanomater., 2013, pp. 17, 10.1155/2013/752973
  • Mamiya, (2011), Sci. Rep., 1, pp. 157, 10.1038/srep00157
  • Medal, (1959), Arch. Surg., 79, pp. 427, 10.1001/archsurg.1959.04320090075011
  • Gilchrist, (1965), Ann. Surg., 161, pp. 890, 10.1097/00000658-196506000-00008
  • Gilchrist, (1957), Ann. Surg., 146, pp. 596, 10.1097/00000658-195710000-00007
  • Rand, (1981), Appl. Biochem. Biotechnol., 6, pp. 265, 10.1007/BF02798277
  • Rand, (1982), Prog. Clin. Biol. Res., 100, pp. 673
  • Rand, (1982), J. Surg. Res., 33, pp. 177, 10.1016/0022-4804(82)90026-9
  • Kobayashi, (1991), J. Neurooncol., 10, pp. 153, 10.1007/BF00146877
  • Kida, (1990), No Shinkei Geka, 18, pp. 521
  • Hergt, (2005), J. Magn. Magn. Mater., 293, pp. 80, 10.1016/j.jmmm.2005.01.047
  • Cespedes, (2014), Nanoscale, 6, pp. 12958, 10.1039/C4NR03004D
  • Alphandery, (2011), ACS Nano, 5, pp. 6279, 10.1021/nn201290k
  • Alphandéry, (2013), Int. J. Hyperth., 29, pp. 801, 10.3109/02656736.2013.821527
  • Ruta, (2015), Sci. Rep., 5, pp. 9090, 10.1038/srep09090
  • Blanco-Andujar, (2016), Nanomedicine (London), 11, pp. 121, 10.2217/nnm.15.185
  • Connord, (2015), Small, 11, pp. 2437, 10.1002/smll.201402669
  • Subramanian, (2016), Int. J. Hyperth., 32, pp. 112, 10.3109/02656736.2015.1104732
  • Rabin, (2002), Int. J. Hyperth., 18, pp. 194, 10.1080/02656730110116713
  • Sanz, (2017), Biomaterials, 114, pp. 62, 10.1016/j.biomaterials.2016.11.008
  • Jeon, (2016), Nanoscale, 8, pp. 16053, 10.1039/C6NR04042J
  • Tasci, (2009), Med. Phys., 36, pp. 1906, 10.1118/1.3106343
  • Mehdaoui, (2012), Appl. Phys. Lett., 100, 10.1063/1.3681361
  • Brezovich, (1984), Med. Phys., 11, pp. 145, 10.1118/1.595490
  • Sun, (2002), J. Am. Chem. Soc., 124, pp. 8204, 10.1021/ja026501x
  • Sun, (2004), J. Am. Chem. Soc., 126, pp. 273, 10.1021/ja0380852
  • Maier-Hauff, (2007), J. Neurooncol., 81, pp. 53, 10.1007/s11060-006-9195-0
  • Maier-Hauff, (2011), J. Neurooncol., 103, pp. 317, 10.1007/s11060-010-0389-0
  • Rondinone, (2000), Appl. Phys. Lett., 76, pp. 3624, 10.1063/1.126727
  • Le, (2016), Nanotechnology, 27, pp. 155707, 10.1088/0957-4484/27/15/155707
  • Kumar, (2011), Adv. Drug Deliv. Rev., 63, pp. 789, 10.1016/j.addr.2011.03.008
  • Lee, (2011), Nat. Nanotechnol., 6, pp. 418, 10.1038/nnano.2011.95
  • Limbach, (2007), Environ. Sci. Technol., 41, pp. 4158, 10.1021/es062629t
  • Bhabra, (2009), Nat. Nanotechnol., 4, pp. 876, 10.1038/nnano.2009.313
  • Baaziz, (2013), J. Phys. Chem. C, 117, pp. 11436, 10.1021/jp402823h
  • Baaziz, (2014), Chem. Mater., 26, pp. 5063, 10.1021/cm502269s
  • Sathya, (2016), Chem. Mater., 28, pp. 1769, 10.1021/acs.chemmater.5b04780
  • Brusentsov, (2001), J. Magn. Magn. Mater., 225, pp. 113, 10.1016/S0304-8853(00)01238-5
  • Jordan, (2003), J. Nanopart. Res., 5, pp. 597, 10.1023/B:NANO.0000006155.67098.44
  • Salas, (2014), J. Phys. Chem. C, 118, pp. 19985, 10.1021/jp5041234
  • Guardia, (2012), ACS Nano, 6, pp. 3080, 10.1021/nn2048137
  • Hugounenq, (2012), J. Phys. Chem. C, 116, pp. 15702, 10.1021/jp3025478
  • Lartigue, (2012), ACS Nano, 6, pp. 10935, 10.1021/nn304477s
  • Cullity, (2011)
  • Joshi, (2009), J. Phys. Chem. C, 113, pp. 17761, 10.1021/jp905776g
  • Martinez-Boubeta, (2013), Sci. Rep., 3, pp. 1652, 10.1038/srep01652
  • Gonzalez-Fernandez, (2009), J. Solid State Chem., 182, pp. 2779, 10.1016/j.jssc.2009.07.047
  • Estrader, (2015), Nanoscale, 7, pp. 3002, 10.1039/C4NR06351A
  • Walter, (2014), Chem. Mater., 26, pp. 5252, 10.1021/cm5019025
  • Khurshid, (2015), J. Appl. Phys., 117, 10.1063/1.4919250
  • Cabrera, (2017), Nanoscale, 9, pp. 5094, 10.1039/C7NR00810D
  • Carrião, (2016), Nanoscale, 8, pp. 8363, 10.1039/C5NR09093H
  • Iacovita, (2016), Molecules, 21, pp. 1357, 10.3390/molecules21101357
  • Kashevsky, (2015), J. Magn. Magn. Mater., 380, pp. 335, 10.1016/j.jmmm.2014.10.109
  • Fortin, (2007), J. Am. Chem. Soc., 129, pp. 2628, 10.1021/ja067457e
  • Goya, (2008), IEEE Trans. Magn., 44, pp. 4444, 10.1109/TMAG.2008.2003508
  • Bakoglidis, (2012), IEEE Trans. Magn., 48, pp. 1320, 10.1109/TMAG.2011.2173474
  • Gonzales-Weimuller, (2009), J. Magn. Magn. Mater., 321, pp. 1947, 10.1016/j.jmmm.2008.12.017
  • Patsula, (2016), J. Phys. Chem. Solids, 88, pp. 24, 10.1016/j.jpcs.2015.09.008
  • Lee, (2006), Nat. Med., 13, pp. 95, 10.1038/nm1467
  • Salvati, (2013), Nat. Nanotechnol., 8, pp. 137, 10.1038/nnano.2012.237
  • Aggarwal, (2009), Adv. Drug Deliv. Rev., 61, pp. 428, 10.1016/j.addr.2009.03.009
  • Walkey, (2014), ACS Nano, 8, pp. 2439, 10.1021/nn406018q
  • Aires, (2015), J. Mater. Chem. B, 3, pp. 6239, 10.1039/C5TB00833F
  • Hühn, (2013), ACS Nano, 7, pp. 3253, 10.1021/nn3059295
  • Lee, (2015), Int. J. Nanomedicine, 10, pp. 97
  • Sakulkhu, (2015), Biomater. Sci., 3, pp. 265, 10.1039/C4BM00264D
  • Aires, (2017), ChemNanoMat, 3, pp. 183, 10.1002/cnma.201600333
  • Ovejero, (2016), Phys. Chem. Chem. Phys., 18, pp. 10954, 10.1039/C6CP00468G
  • Arami, (2015), Chem. Soc. Rev., 44, pp. 8576, 10.1039/C5CS00541H
  • Mehdaoui, (2013), Phys. Rev. B, 87, 10.1103/PhysRevB.87.174419
  • Conde-Leboran, (2015), J. Phys. Chem. C, 119, pp. 15698, 10.1021/acs.jpcc.5b02555
  • de la Presa, (2012), J. Phys. Chem. C, 116, pp. 25602, 10.1021/jp310771p
  • Dennis, (2009), Nanotechnology, 20, pp. 395103, 10.1088/0957-4484/20/39/395103
  • Campanini, (2015), Nanoscale, 7, pp. 7717, 10.1039/C5NR00273G
  • Blanco-Andujar, (2015), Nanoscale, 7, pp. 1768, 10.1039/C4NR06239F
  • Liu, (2012), J. Mater. Chem., 22, pp. 8235, 10.1039/c2jm30472d
  • Etheridge, (2014), Technology (Singap. World Sci.), 2, pp. 214
  • Hradil, (2003), Appl. Clay Sci., 22, pp. 223, 10.1016/S0169-1317(03)00076-0
  • Xu, (2012), Sci. Total Environ., 424, pp. 1, 10.1016/j.scitotenv.2012.02.023
  • Domínguez, (2008), J. Magn. Magn. Mater., 320, pp. e725, 10.1016/j.jmmm.2008.04.022
  • Ortega, (2008), Nanotechnology, 19, pp. 475706, 10.1088/0957-4484/19/47/475706
  • Sivula, (2011), ChemSusChem, 4, pp. 432, 10.1002/cssc.201000416
  • Osman, (2001), Tribol. Int., 34, pp. 369, 10.1016/S0301-679X(01)00017-2
  • Mosso, (1973), Ann. Surg., 178, pp. 663, 10.1097/00000658-197311000-00021
  • Schauben, (1990), J. Emerg. Med., 8, pp. 309, 10.1016/0736-4679(90)90012-K
  • Angelakeris, (2014), vol. 75
  • Kallumadil, (2009), J. Magn. Magn. Mater., 321, pp. 1509, 10.1016/j.jmmm.2009.02.075
  • Sakellari, (2015), J. Magn. Magn. Mater., 380, pp. 360, 10.1016/j.jmmm.2014.10.042
  • U.S. Food and Drug Administration: UCM559654, FDA Drug Safety Communication: FDA evaluating the risk of brain deposits with repeated use of gadolinium-based contrast agents for magnetic resonance imaging (MRI), 2017, https://www.fda.gov/Drugs/DrugSafety/ucm559007.htm.
  • U.S. Food and Drug Administration: UCM559654, FDA Drug Safety Communication: FDA evaluating the risk of brain deposits with repeated use of gadolinium-based contrast agents for magnetic resonance imaging (MRI), 2017, https://www.fda.gov/Drugs/DrugSafety/ucm559007.htm.
  • Burke, (2016), Magn. Reson. Imaging, 34, pp. 1078, 10.1016/j.mri.2016.05.005
  • Thorat, (2016), Eur. J. Inorg. Chem., 2016, pp. 4586, 10.1002/ejic.201600706
  • Fantechi, (2014), ACS Nano, 8, pp. 4705, 10.1021/nn500454n
  • Cho, (2012), Nat. Mater., 11, pp. 1038, 10.1038/nmat3430
  • Bauer, (2016), Nanoscale, 8, pp. 12162, 10.1039/C6NR01877G
  • Nguyen, (2015), Curr. Appl. Phys., 15, pp. 1482, 10.1016/j.cap.2015.08.016
  • Das, (2016), ACS Appl. Mater. Interfaces, 8, pp. 25162, 10.1021/acsami.6b09942
  • Abdulla-Al-Mamun, (2013), RSC Adv., 3, pp. 7816, 10.1039/c3ra21479f
  • Dewhirst, (2003), Int. J. Hyperth., 19, pp. 267, 10.1080/0265673031000119006
  • Chen, (1988), J. Biomed. Mater. Res., 22, pp. 303, 10.1002/jbm.820220405
  • Koyashi, (1986), Neurol. Med. Chir., 26, pp. 116, 10.2176/nmc.26.116
  • Thorat, (2016), RSC Adv., 6, pp. 94967, 10.1039/C6RA20135K
  • Yao, (2017), Small, 13, pp. 1602225, 10.1002/smll.201602225
  • Shah, (2014), ACS Nano., 8, pp. 9379, 10.1021/nn503431x
  • Singh, (2015), J. Mat. Chem. C, 3, pp. 1965, 10.1039/C4TC02636E
  • Wang, (2016), J. Alloys Compd., 681, pp. 50, 10.1016/j.jallcom.2016.04.141
  • Lee, (2011), Nat. Nano., 6, pp. 418, 10.1038/nnano.2011.95
  • Salunkhe, (2016), J. Magn. Magn. Mater., 419, pp. 533, 10.1016/j.jmmm.2016.06.057
  • Yunok, (2016), Nanotechnology, 27, pp. 115101, 10.1088/0957-4484/27/11/115101
  • Si, (2005), Appl. Phys. Lett., 87, pp. 133122, 10.1063/1.2072807
  • Maehara, (2005), J. Mater. Sci., 40, pp. 135, 10.1007/s10853-005-5698-x
  • Hatamie, (2016), Colloids Surf. B, 146, pp. 271, 10.1016/j.colsurfb.2016.06.018
  • Seemann, (2015), J. Control. Release, 197, pp. 131, 10.1016/j.jconrel.2014.11.007
  • Yang, (2015), Ther. Deliv., 6, pp. 1195, 10.4155/tde.15.68
  • Sahu, (2015), Dalton Trans., 44, pp. 9103, 10.1039/C4DT03470H
  • Tseng, (2014), Ceram. Int., 40, pp. 5117, 10.1016/j.ceramint.2013.09.137
  • Périgo, (2012), Nanotechnology, 23, pp. 175704, 10.1088/0957-4484/23/17/175704
  • McNerny, (2010), J. Appl. Phys., 107, pp. 09A312, 10.1063/1.3348738
  • Lu, (2012), Colloids Surf. A, 414, pp. 168, 10.1016/j.colsurfa.2012.08.062
  • Alonso, (2015), J. Appl. Phys., 117, pp. 17D113, 10.1063/1.4908300
  • Rehman, (2002), J. Endourol., 16, pp. 523, 10.1089/089277902760367502
  • Sánchez, (2015), pp. 21
  • Espinosa, (2015), Nanoscale, 7, pp. 18872, 10.1039/C5NR06168G
  • Fantechi, (2016), Interface Focus, 6, 10.1098/rsfs.2016.0058
  • Das, (2016), ACS Appl. Mater. Interfaces, 8, pp. 25162, 10.1021/acsami.6b09942
  • Brollo, (2016), J. Magn. Magn. Mater, 397, pp. 20, 10.1016/j.jmmm.2015.08.081
  • Starsich, (2016), Adv. Healthc. Mater., 5, pp. 2698, 10.1002/adhm.201600725
  • Bohara, (2015), RSC Adv., 5, pp. 47225, 10.1039/C5RA04553C
  • Kim, (2005), J. Magn. Magn. Mater., 293, pp. 320, 10.1016/j.jmmm.2005.02.077
  • Rashid, (2016), J. Magn. Magn. Mater., 420, pp. 232, 10.1016/j.jmmm.2016.07.008
  • Manh, (2014), Phys. B Condens. Matter, 444, pp. 94, 10.1016/j.physb.2014.03.025
  • Thorat, (2014), Mat. Sci. Eng. C, 42, pp. 637, 10.1016/j.msec.2014.06.016
  • Soleymani, (2015), Polym. J., 47, pp. 797, 10.1038/pj.2015.66
  • McBride, (2016), CrystEngComm, 18, pp. 407, 10.1039/C5CE01890K
  • Nomura, (2007), Heat Transfer Eng., 28, pp. 1017, 10.1080/01457630701483711
  • Das, (2015), J. Magn. Magn. Mater., 392, pp. 91, 10.1016/j.jmmm.2015.05.029
  • Chiriac, (2015), J. Magn. Magn. Mater., 380, pp. 13, 10.1016/j.jmmm.2014.10.015
  • Wang, (2016), J. Mater. Chem.B, 4, pp. 1908, 10.1039/C5TB01910A
  • Xie, (2016), Nanoscale, 8, pp. 16902, 10.1039/C6NR03916B
  • Mehdaoui, (2010), J. Appl. Phys., 107, pp. 09A324, 10.1063/1.3348795
  • Peci, (2015), Carbon, 87, pp. 226, 10.1016/j.carbon.2015.01.052
  • Chalkidou, (2011), J. Magn. Magn. Mater., 323, pp. 775, 10.1016/j.jmmm.2010.10.043
  • Wu, (2015), RSC Adv., 5, pp. 22965, 10.1039/C4RA10545A
  • Meffre, (2012), Nano Lett., 12, pp. 4722, 10.1021/nl302160d
  • Sharma, (2012), J. Magn. Magn. Mater., 324, pp. 3975, 10.1016/j.jmmm.2012.05.059
  • Kuznetsov, (2007), J. Magn. Magn. Mater., 311, pp. 197, 10.1016/j.jmmm.2006.11.199
  • Veverka, (2008), Nanotechnology, 19, pp. 215705, 10.1088/0957-4484/19/21/215705
  • Jing, (2015), ACS Appl. Mater. Interfaces, 7, pp. 12649, 10.1021/acsami.5b01680
  • Chen, (1988), J. Biomed. Mater. Res., 22, pp. 303, 10.1002/jbm.820220405
  • Macías-Martínez, (2016), J. Appl. Res. Technol., 14, pp. 239, 10.1016/j.jart.2016.05.007
  • Chen, (2016), Nanoscale Res. Lett., 11, pp. 538, 10.1186/s11671-016-1756-3
  • Soleymani, (2015), Polym. J., 47, pp. 797, 10.1038/pj.2015.66
  • Saldívar-Ramírez, (2014), J. Mater. Sci. Mater. Med., 25, pp. 2229, 10.1007/s10856-014-5187-3
  • Mameli, (2016), Nanoscale, 8, pp. 10124, 10.1039/C6NR01303A
  • Barati, (2013), IEEE Trans. Magn., 49, pp. 3460, 10.1109/TMAG.2013.2246860
  • Barati, (2014), Appl. Phys. Lett., 105, pp. 162412, 10.1063/1.4900557
  • Ucar, (2013), J. Appl. Phys., 113, 10.1063/1.4795012
  • Kostarelos, (2008), Nat. Biotechnol., 26, pp. 774, 10.1038/nbt0708-774
  • Zhang, (2015), Rev. Adv. Mater. Sci., 40, pp. 165
  • Peci, (2015), Carbon, 87, pp. 226, 10.1016/j.carbon.2015.01.052
  • Pineux, (2015), Nanoscale, 7, pp. 20474, 10.1039/C5NR04824A
  • Wang, (2013), IEEE Trans. Magn., 49, pp. 255, 10.1109/TMAG.2012.2224648
  • Wildeboer, (2014), J. Phys. D. Appl. Phys., 47, pp. 495003, 10.1088/0022-3727/47/49/495003
  • Thiesen, (2008), Int. J. Hyperth., 24, pp. 467, 10.1080/02656730802104757
  • Johannsen, (2005), Int. J. Hyperth., 21, pp. 637, 10.1080/02656730500158360
  • Johannsen, (2007), Int. J. Hyperth., 23, pp. 315, 10.1080/02656730601175479
  • Wust, (2006), Int. J. Hyperth., 22, pp. 673, 10.1080/02656730601106037
  • Matsumine, (2007), Clin. Exp. Metastasis, 24, pp. 191, 10.1007/s10585-007-9068-8
  • Kawai, (2016), UMIN Clinical Trials Registry (UMIN-CTR): UMIN000021187, Phase one clinical trials of hyperthermia using radiofrequency capacitive heating device and magnetic cationic liposome in prostate cancer resistant to standard treatment
  • Chu, (2013), Biomaterials, 34, pp. 4078, 10.1016/j.biomaterials.2013.01.086
  • Espinosa, (2016), ACS Nano, 10, pp. 2436, 10.1021/acsnano.5b07249
  • Meng, (2016), Adv. Funct. Mater., 26, pp. 8231, 10.1002/adfm.201603776
  • Wu, (2015), J. Nanomed. Nanotechnol., 6, pp. 264
  • Zhang, (2015), ACS Appl. Mater. Interfaces, 7, pp. 4650, 10.1021/am5080453
  • Shen, (2015), Biomaterials, 39, pp. 67, 10.1016/j.biomaterials.2014.10.064
  • Griffete, (2015), Nanoscale, 7, pp. 18891, 10.1039/C5NR06133D
  • N'Guyen, (2013), Angew. Chem., 125, pp. 14402, 10.1002/ange.201306724
  • Riedinger, (2013), Nano Lett., 13, pp. 2399, 10.1021/nl400188q
  • Dias, (2013), Angew. Chem. Int. Ed., 52, pp. 11526, 10.1002/anie.201305835
  • Polo-Corrales, (2012), J. Appl. Phys., 111, 10.1063/1.3680532
  • Huang, (2010), Nat. Nanotechnol., 5, pp. 602, 10.1038/nnano.2010.125
  • Lunov, (2010), AIP Conf. Proc., 1311, pp. 288, 10.1063/1.3530027
  • Zhou, (2009), Prog. Nat. Sci., 19, pp. 1713, 10.1016/j.pnsc.2009.07.013
  • Liu, (2012), Oncol. Rep., 27, pp. 791
  • Shir, (2005), Instrum. Sci. Technol., 33, pp. 661, 10.1080/10739140500311239
  • Taren, (1970), Science, 168, pp. 138, 10.1126/science.168.3927.138
  • Rui, (2010), J. Clin. Rehabil. Tissue Eng. Res., 14, pp. 4036
  • Kim, (2013), Adv. Polym. Technol., 32, pp. E714, 10.1002/adv.21314
  • Chan, (1993), Int. J. Hyperth., 9, pp. 831, 10.3109/02656739309034986
  • van Rhoon, (2005), Int. J. Hyperth., 21, pp. 489, 10.1080/02656730500272963
  • Tarasek, (2014), Int. J. Hyperth., 30, pp. 142, 10.3109/02656736.2014.887794
  • Dong, (2014), ACS Nano, 8, pp. 5199, 10.1021/nn501250e
  • van Rhoon, (2016), Int. J. Hyperth., 32, pp. 50, 10.3109/02656736.2015.1114153
  • Liu, (2015), Adv. Mater., 27, pp. 1939, 10.1002/adma.201405036
  • Yang, (2014), Adv. Funct. Mater., 25, pp. 812, 10.1002/adfm.201402764
  • Sato, (2016), Sci. Rep., 6, 10.1038/srep24629
  • Yin, (2014), Small, 10, pp. 4106
  • Huang, (2016), IEEE J. Sel. Top. Quantum Electron., 22, 10.1109/JSTQE.2015.2505147
  • Kellnberger, (2016), Phys. Rev. Lett., 116, pp. 108103, 10.1103/PhysRevLett.116.108103
  • Brullot, (2012), Nanomedicine, 8, pp. 559, 10.1016/j.nano.2011.09.004