Obtaining EPA-rich polar lipids from microalga Nannochloropsis sp. by silica-gel chromatography using non-toxic solvents

  1. Sánchez, María D. Macías 1
  2. Callejón, María J. Jiménez 1
  3. Medina, Alfonso Robles 1
  4. Moreno, Pedro A. González 1
  5. López, Elvira Navarro 1
  6. Cerdán, Luis Esteban 1
  7. Grima, Emilio Molina 1
  1. 1 Center for Research in Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAMBITAL), Department of Chemical Engineering, University of Almería, 04120, La Cañada (Almería), Spain
Revista:
Biomass Conversion and Biorefinery

ISSN: 2190-6815 2190-6823

Año de publicación: 2022

Tipo: Artículo

DOI: 10.1007/S13399-022-02520-2 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Biomass Conversion and Biorefinery

Resumen

Current research indicates that n-3 polyunsaturated fatty acids (PUFAs) bind to polar lipids (phospholipids and glycolipids) seem to exert a greater bioavailability compared to their neutral forms. The aim of this work was to obtain eicosapentaenoic acid (EPA) rich polar lipids from the saponifiable lipids (SLs) extracted from the microalga Nannochloropsis sp. (33.4 ± 0.1% of EPA; 60 ± 0.6% polar lipids) by fractionation using silica-gel columns and importantly, non-polar and polar (ethanol) non-toxic solvents. Nowadays, few studies have been conducted towards the extraction and purification of polar lipids. Firstly, the solvent type for obtaining the neutral saponifiable lipid (NSL) fraction (ethyl acetate, EA, butyl acetate, BA) and the SL/silica-gel, SL/BA, and SL/ethanol ratios were optimized in a small silica-gel cartridge (0.69 g silica gel). The optimized conditions were an SL/silica-gel ratio of 22.6 mg/g, an SL/BA ratio of 1.56 mg/mL and an SL/ethanol ratio of 0.312 mg/mL. Next, the fractionation scale was increased to a column containing 10 g of silica-gel. At this scale, a BA SL fraction was obtained with 96.2 ± 0.5% of NSLs, and an ethanol SL fraction containing 97.7 ± 0.3% of polar lipids and 44.9 ± 0.2% of EPA. In the ethanol fraction, 86.6 ± 0.2% of the polar lipids and 71.5 ± 0.4% of the EPA from the SL microalgal extract were recovered. Consequently, EPA-rich polar lipids were obtained at high yields and purities, which could be used as a source of n-3 PUFAs with greater bioavailability than those based on neutral lipids.

Referencias bibliográficas

  • Swanson D, Block R, Mousa S (2012) Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr 3:1–7. https://doi.org/10.3945/an.111.000893
  • Lee JH, O’Keefe JH, Lavie CJ, Harris WS (2009) Omega-3 fatty acids: cardiovascular benefits, sources and sustainability. Nat Rev Cardiol 6:753–758. https://doi.org/10.1038/nrcardio.2009.188
  • Calder PC (2012) The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability. Mol Nutr Food Res 56:1073–1080. https://doi.org/10.1002/mnfr.201100710
  • FAO (Food and Agriculture Organization (2010) Paper 91.
  • Finco A, Mamani L, Carvalho J, de Melo Pereira G, Thomaz-Soccol V, Soccol C (2017) Technological trends and market perspectives for production of microbial oils rich in omega-3. Crit Rev Biotechnol 37:656–671. https://doi.org/10.1080/07388551.2016.1213221
  • Rossmeisl M, Macek Z, Kuda O, Bryhn M, Kopecky J (2012) Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: possible role of endocannabinoids. Plos One 7:e38834. https://doi.org/10.1371/journal.pone.0038834
  • Tang X, Li ZJ, Xu J, Xue Y, Li JZ, Wang JF, Yanagita T, Xue CH, Wang YM (2012) Short term effects of different omega-3 fatty acid formulation on lipid metabolism in mice fed high or low fat diet. Lipids Health Dis 11:70–78. https://doi.org/10.1186/1476-511X-11-70
  • Lordan R, Redfern S, Tsoupras A, Zabetakis I (2020) Inflammation and cardiovascular disease: are marine phospholipids the answer? Food Funct 11:2861. https://doi.org/10.1039/c9fo01742a
  • van Hoogevest P, Wendel A (2014) The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur J Lipid Sci Technol 116:1088–1107. https://doi.org/10.1002/ejlt.201400219
  • Burri L, Hoem N, Banni S, Berge K (2012) Marine omega-3 phospholipids: metabolism and biological activities. Int J Mol Sci 13:15401–15419. https://doi.org/10.3390/ijms131115401
  • T.A. Conde, I. Zabetakis, A. Tsoupras, I. Medina, M. Costa, J. Silva, B. Neves, P. Domingues, M.R. Domingues (2021) Microalgal lipid extract have potential to modulate the inflammatory response: a critical review. Int. J. Mol. Sci. 22 . https://doi.org/10.3390/ijms22189825
  • E. Molina, F. García, F.G. Acién 1999 Production of EPA from Phaeodactylum tricornutum, in: chemicals from Microalgae. Edited by Zvi Cohen. Taylor & Francis, London,  pp 57–92.
  • Rao A, Briskey D, Nalley JO, Ganuza E (2020) Omega-3 eicosapentaenoic acid (EPA) rich extract from the microalga Nannochloropsis decreases cholesterol in healthy individuals: a double-Blind, randomized, placebo-controlled, three-month supplementation study. Nutrients 12:1869. https://doi.org/10.3390/nu12061869
  • Jiménez Callejón MJ, Robles Medina A, González Moreno PA, Esteban Cerdán L, OrtaGuillén S, Molina Grima E (2020) Simultaneous extraction and fractionation of lipids from the microalga Nannochloropsis sp. for the production of EPA-rich polar lipid concentrates. J Appl Phycol 32:1117–1128. https://doi.org/10.1007/s10811-020-02037-z
  • Devos M, Poisson L, Ergan F, Pencreac’h G (2006) Enzymatic hydrolysis of phospholipids from Isochrysisgalbana for docosahexaenoic acid enrichment. Enz Microb Technol 39:548–554. https://doi.org/10.1016/j.enzmictec.2005.08.040
  • Antonopoulos E, Freisleben H, Krisnamurti D, Esuningtyas A, Mulyanto C, Ridwan R, Freisleben S (2013) Fractionation and purification of membrane lipids from the archaeon Thermoplama acidophilum DSM 1728/10217. Sep Purif Technol 110:119–126. https://doi.org/10.1016/j.seppur.2013.03.014
  • Jiménez Callejón MJ, Robles Medina A, Macías Sánchez MD, González Moreno PA, Navarro López E, Esteban Cerdán L, Molina Grima E (2022) Supercritical fluid extraction and pressurized liquid extraction processes applied to EPA-rich polar lipid recovery from the microalga Nannochloropsis sp. Algal Res 62:102586. https://doi.org/10.1016/j.algal.2021.102586
  • Monte J, Ribeiro C, Parreira C, Costa L, Brive L, Casal S, Brazinha C, Crespo JG (2020) Biorefinery of Dunaliella salina: sustainable recovery of carotenoids, polar lipids and glycerol. Bioresour Technol 297:122509. https://doi.org/10.1016/j.biortech.2019.122509
  • G. Kochert, Quantitation of the macromolecular components of microalgae. In: Hellebust, J, Cragie, S (Eds.), Handbook of Phycological Methods. Physiological and Biochemical Methods. Cambridge University Press, London, 1978.
  • Jiménez MJ, Robles A, Macías MD, Hita E, Esteban L, González PA, Molina E (2014) Extraction of saponifiable lipids from wet microalgal biomass for biodiesel production. Bioresour Technol 169:198–205. https://doi.org/10.1016/j.biortech.2014.06.106
  • M. Kates 1986 Techniques of lipidology isolation, analysis, and identification of lipids. Edited by Burdon R.H. and van Knippenber PH Elsevier Science Publishers, Amsterdam,  p. 190.
  • Navarro López E, Robles Medina A, González Moreno PA, Jiménez Callejón MJ, Esteban Cerdán L, Martín Valverde L, Molina Grima E (2015) Enzymatic production of biodiesel from Nannochloropsisgaditana lipids: influence of operational variables and polar lipid content. Bioresour Technol 187:346–353. https://doi.org/10.1016/j.biortech.2015.03.126
  • Jiménez MJ, Robles A, Macías MD, Esteban L, González PA, Navarro E, Hita E, Molina E (2020) Obtaining highly pure EPA-rich lipids from dry and wet Nannochloropsis gaditana microalgal biomass using ethanol, hexane and acetone. Algal Res 45:101729. https://doi.org/10.1016/j.algal.2019101729
  • López D, Belarbi EH, Rodríguez J, Segura CI, Giménez A (1998) Acyl lipids of three microalgae. Phytochemistry 47:1473–1481. https://doi.org/10.1016/S0031-9422(97)01080-7
  • F. Guihéneuf, M. Schmid, D.B. Stengel, Lipids and fatty acids in algae: extraction, fractionation into lipid classes, and analysis by gas chromatography coupled with flame ionization detector (GC-FID) in: Dagmar B. Stengel and Solène Connan (eds.), Natural products from marine algae: methods and Protocols, Methods in Molecular Biology, vol. 1308, Chapter 11, pp. 173–190. Springer Science+Business Media, New York, 2015.
  • Prat D, Wells A, Hayler J, Sneddon H, McElroy R, Abou-Shehada S, Dunn PJ (2016) CHEM21 selection guide of classical- and less classical-solvents. Green Chem 18:288–296. https://doi.org/10.1039/c5gc01008j
  • Rodríguez J, Belarbi E, García J, López D (1998) Rapid simultaneous lipid extraction and transesterification for fatty acid analyses. Biotechnol Technol 12:689–691. https://doi.org/10.1023/A:1008812904017